Solusi Persamaan Klein-Gordon Dalam Ruang-Waktu Schwarzschild

Salauddin, Galih Rafi (2025) Solusi Persamaan Klein-Gordon Dalam Ruang-Waktu Schwarzschild. Other thesis, Institut teknologi Sepuluh Nopember.

This is the latest version of this item.

[thumbnail of 5001201043-Undergraduate_Thesis.pdf] Text
5001201043-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (4MB)

Abstract

Penelitian ini bertujuan untuk mencari solusi eksak dari persamaan Klein-Gordon dalam ruang waktu Schwarzschild, yang menggambarkan dinamika partikel skalar dalam pengaruh gravitasi yang kuat. Dengan menggunakan metode penurunan teoritis, persamaan diferensial parsial Klein-Gordon ditulis ulang dalam bentuk yang disesuaikan dengan simetri metrik Schwarzschild. Pemisahan variabel dilakukan, menghasilkan persamaan radial dan persamaan sudut yang terpisah. Solusi radial dianalisis lebih lanjut dengan pendekatan analitik untuk mendeskripsikan perilaku gelombang dekat cakrawala peristiwa (r→r_s​) dan di kejauhan (r→∞) Hasil penelitian menunjukkan bahwa solusi eksak dapat dinyatakan dalam fungsi spesial, seperti fungsi Bessel, fungsi hipergeometrik, atau kombinasi keduanya, bergantung pada kondisi batas yang diterapkan. Temuan ini tidak hanya memberikan wawasan baru tentang sifat gelombang skalar di sekitar objek masif seperti lubang hitam, tetapi juga dapat digunakan untuk mengeksplorasi fenomena seperti emisi radiasi Hawking atau resonansi kuantum. Dengan menggabungkan pendekatan analitik dan numerik, penelitian ini membuka jalan untuk kajian lanjutan mengenai dinamika partikel skalar dalam ruang waktu melengkung.
=====================================================================================================================================
This study aims to find the exact solutions of the Klein-Gordon equation in Schwarzschild spacetime, describing the dynamics of scalar particles under the influence of strong gravity. Using theoretical derivations, the partial differential Klein-Gordon equation is reformulated to align with the symmetries of the Schwarzschild metric. Variable separation is performed, resulting in decoupled radial and angular equations. The radial solution is further analyzed using analytical approaches to describe the wave behavior near the event horizon ( ) and at infinity ( ). The results show that the exact solutions can be expressed in terms of special functions, such as Bessel functions, hypergeometric functions, or their combinations, depending on the boundary conditions applied. These findings not only provide new insights into the properties of scalar waves around massive objects like black holes but also serve as a foundation for exploring phenomena such as Hawking radiation emission or quantum resonances. By combining analytical and numerical approaches, this study paves the way for further investigations into the dynamics of scalar particles in curved spacetime.

Item Type: Thesis (Other)
Uncontrolled Keywords: Gravity, Quantum, Relativity, Theoretical Physics, Unification, Gravitasi, Kuantum, Relativitas, Fisika Teori, Unifikasi
Subjects: Q Science > QC Physics > QC174.17.Q38 Quantum teleportation
Q Science > QC Physics > QC179 Gravitational waves--Measurement--Statistical methods
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45201-(S1) Undergraduate Thesis
Depositing User: Galih Rafi Salauddin
Date Deposited: 06 Feb 2025 07:26
Last Modified: 06 Feb 2025 07:26
URI: http://repository.its.ac.id/id/eprint/118412

Available Versions of this Item

Actions (login required)

View Item View Item