Santoso, Nathania Verda (2025) Menentukan Perbedaan PDRB Perkapita Berdasarkan Hasil Clustering Faktor-Faktor yang Mempengaruhi Pengangguran Pada Provinsi di Indonesia Tahun 2023. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
2043201046-Undergraduate_Thesis.pdf Restricted to Repository staff only until 1 April 2027. Download (1MB) | Request a copy |
Abstract
Pengangguran merupakan kondisi di mana individu ingin bekerja tetapi tidak mendapatkan pekerjaan, menimbulkan dampak buruk pada kesejahteraan sosial dan ekonomi. Di Indonesia, pertumbuhan penduduk yang tinggi dan minimnya lapangan kerja memperparah masalah ini, menyebabkan ekonomi yang tidak stabil. Pengangguran mengakibatkan penurunan kemakmuran, berkurangnya pendapatan pajak, dan ketidakstabilan sosial. Untuk mengatasi pengangguran, diperlukan kebijakan berbasis pengelompokan wilayah. Penelitian ini menggunakan metode K-Means Clustering untuk mengelompokkan provinsi di Indonesia berdasarkan indikator pengangguran, seperti persentase tenaga kerja formal, tingkat partisipasi angkatan kerja, jumlah penduduk, laju pertumbuhan penduduk, kepadatan penduduk, dan persentase pendidikan tamat SMA/Sederajat. Setelah klaster terbentuk, dilakukan uji ANOVA untuk membandingkan PDRB per kapita antar klaster, guna mengidentifikasi perbedaan ekonomi yang signifikan. ANOVA membantu menilai apakah terdapat perbedaan antara klaster 1, klaster 2, maupun klaster 3. Hasil dari penelitian ini yaitu pada klaster 1 terdapat 6 provinsi, klaster 2 terdapat 25 provinsi, dan klaster 3 terdapat 3 provinsi. Kemudian klaster 1 tergolong kategori PDRB sedang, klaster 2 tergolong kategori PDRB rendah, dan klaster 3 tergolong dalam kategori PDRB tinggi.
===================================================================================================================================
Unemployment is a condition where individuals are willing to work but cannot find employment, leading to negative impacts on social and economic well-being. In Indonesia, high population growth and limited job opportunities exacerbate this issue, causing economic instability. Unemployment results in reduced prosperity, decreased tax revenue, and social unrest. Addressing unemployment requires policies based on regional clustering. This study employs the K-Means Clustering method to group provinces in Indonesia based on unemployment indicators, such as the percentage of formal workers, labor force participation rate, total population, population growth rate, population density, and the percentage of high school graduates or equivalent education. After the clusters are formed, an ANOVA test is conducted to compare GDP per capita across clusters, aiming to identify significant economic differences. ANOVA helps determine whether there are differences among Cluster 1, Cluster 2, and Cluster 3. The results of this study show that Cluster 1 consists of 6 provinces, Cluster 2 consists of 25 provinces, and Cluster 3 consists of 3 provinces. Cluster 1 falls into the medium GDP category, Cluster 2 into the low GDP category, and Cluster 3 into the high GDP category.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Klaster, Pengangguran, Provinsi, Cluster, Province, Unemployment |
Subjects: | H Social Sciences > HA Statistics > HA31.35 Analysis of variance |
Divisions: | Faculty of Vocational > 49501-Business Statistics |
Depositing User: | Nathania Verda Santoso |
Date Deposited: | 11 Feb 2025 04:20 |
Last Modified: | 11 Feb 2025 04:20 |
URI: | http://repository.its.ac.id/id/eprint/118634 |
Actions (login required)
![]() |
View Item |