Analisis CFD Air Layer Drag Reduction pada Kapal

Priambudi, Fahri (2025) Analisis CFD Air Layer Drag Reduction pada Kapal. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5019221159_Undergraduate_Thesis.pdf] Text
5019221159_Undergraduate_Thesis.pdf
Restricted to Registered users only until 1 April 2027.

Download (4MB) | Request a copy

Abstract

Ketika kapal beroperasi, kapal menghasilkan emisi gas seperti NOx, SOx, COx, PM, dan HC, yang berkontribusi terhadap peningkatan efek Greenhouse Gases (GHG) yang menyebabkan pemanasan global. Melihat tren peningkatan emisi GHG yang dihasilkan kapal setiap tahunnya, International Maritime Organization (IMO) membuat strategi untuk mengurangi emisi tersebut setidaknya 40% di bidang pelayaran pada tahun 2030. Menanggapi strategi tersebut, berbagai teknologi hemat energi telah dikembangkan untuk memenuhi kebutuhan industri, salah satunya adalah metode Air Lubrication System (ALS). Sistem pelumasan udara mengurangi frictional resistance kapal dengan menciptakan lapisan pelumas antara air dan lambung kapal, sehingga mengurangi luas permukaan yang dibasahi secara efektif. Pelumasan udara umumnya dibagi menjadi tiga jenis utama: Bubble Drag Reduction (BDR), Air Layer Drag Reduction (ALDR), dan Partial Cavity Drag Reduction (PCDR). Menurut para peneliti, ALDR merupakan salah satu metode yang menjanjikan dibandingkan dengan dua jenis lainnya. Namun, dari sekian banyak penelitian yang telah dilakukan, penelitian mendalam mengenai efek turunan dari satu parameter terhadap parameter lainnya masih sangat kurang (seperti: lokasi peletakan, sudut kemiringan, dan tekanan injeksi). Melihat adanya kesenjangan ini, penulis ingin menganalisis efek turunan dari parameter terhadap pengurangan resistance. Penelitian ini dilakukan dengan pendekatan simulasi menggunakan perangkat lunak ANSYS CFX untuk menganalisis pelumasan Udara pada lambung model kapal LNG. Solusi numerik yang digunakan adalah Volume of Fluid (VOF) untuk mendiskritkan persamaan konservasi, RANS (Reynolds-Averaged NavierStokes) pada persamaan momentum, dan SST pada model turbulensi. Hasil penelitian menunjukkan bahwa pengurangan resistance terbesar sebesar 73,633% dapat dicapai pada konfigurasi parameter: lokasi ke-2, dengan sudut kemiringan 75˚, pada tekanan 0,3 bar. Akhirnya, hasil penelitian menunjukkan bahwa variasi ketiga parameter tersebut terbukti berpengaruh terhadap pengurangan resistance kapal.
==================================================================================================================================
As a ship operates, they produce gaseous emissions such as NOx, SOx, COx, PM, and HC, which contribute to an increase in the Greenhouse Gases (GHG) effect that leads to global warming. Seeing the increasing trend of GHG emissions produced by ships every year, International Maritime Organization (IMO) created a strategy to reduce these emissions by at least 40% in shipping by 2030. In response to this strategy, various energy-efficient technologies have been developed to meet the needs of the industry, one of which is the Air Lubrication System (ALS) method. The air of the lubrication system reduces the frictional resistance of the ship by creating a lubricating layer between the water and the hull, thereby reducing the effective wetted surface area. Air lubrication is generally divided into three main types: Bubble Drag Reduction (BDR), Air Layer Drag Reduction (ALDR), and Partial Cavity Drag Reduction (PCDR). According to the researchers, ALDR is one promising method compared to the other two types. However, from the many studies that have been conducted, in-depth research on the derivative effects of one parameter on another is lacking (such as: laying location, tilt angle, and injection pressure). Seeing this gap, the author wanted to analyse the derivative effects of parameters on drag reduction. This research was conducted with a simulation approach using ANSYS CFX software to analyse air lubrication in the hull of an LNG ship model. The numerical solutions used are Volume of Fluid (VOF) to discretise the conservation equation, RANS (Reynolds-Averaged Navier-Stokes) on the momentum equation, and SST on the turbulence model. The results show that the largest drag reduction of 73.633% can be achieved in the parameter configuration: 2nd location, with a tilt angle of 75˚, at a pressure of 0.3 bar. Finally, the results showed that the variation of the three parameters proved to have an effect on the reduction of ship drag.

Item Type: Thesis (Other)
Uncontrolled Keywords: Air layer drag reduction, ANSYS CFX, IMO GHG strategy, Model ship
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM751 Resistance and propulsion of ships
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36202-(S1) Undergraduate Thesis
Depositing User: Fahri Priambudi
Date Deposited: 05 Mar 2025 01:04
Last Modified: 05 Mar 2025 01:04
URI: http://repository.its.ac.id/id/eprint/118916

Actions (login required)

View Item View Item