Pemodelan Prevalensi Balita Stunting Di Jawa Timur Menggunakan Regresi Spline Truncated

Sari, Mega Puspita (2025) Pemodelan Prevalensi Balita Stunting Di Jawa Timur Menggunakan Regresi Spline Truncated. Diploma thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2043211072-Undergraduate_Thesis.pdf] Text
2043211072-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until July 2025.

Download (1MB) | Request a copy

Abstract

Dalam rangka mencapai tujuan kedua Sustainable Development Goals (SDGs) untuk mengakhiri kelaparan pada tahun 2030 serta mendukung target nasional dalam menurunkan prevalensi stunting, penting untuk mempertimbangkan bahwa stunting merupakan masalah gizi kronis yang dipengaruhi oleh berbagai faktor sosial, ekonomi, dan kesehatan, terutama sebelum dan setelah pandemi COVID-19. Meskipun prevalensi stunting menurun sebesar 7,6% dari tahun 2019 - 2022, angka tersebut masih belum mencapai target nasional sebesar 14%. Penelitian ini bertujuan untuk memodelkan prevalensi stunting di Jawa Timur dengan menggunakan regresi spline truncated, mempertimbangkan variabel-variabel prediktor sosial, ekonomi, dan kesehatan dalam periode tersebut. Metode ini dipilih untuk menangkap hubungan non-linear antara variabel prediktor dan prevalensi stunting. Data yang digunakan mencakup persentase kepemilikan BPJS kesehatan penerima bantuan iuran (PBI), persentase realisasi anggaran APBD untuk belanja bantuan sosial, persentase pengeluaran per kapita bulanan untuk makanan, persentase bayi di bawah usia 6 bulan yang diberi ASI eksklusif, persentase bayi lahir dengan berat badan lahir rendah (BBLR), dan persentase ibu hamil yang mendapatkan tablet tambah darah. Hasil penelitian ini menunjukkan model terbaik adalah menggunakan kombinasi titik knot 1,1,3,3,2,2 berdasarkan nilai GCV minimum dengan variabel yang berpengaruh signifikan adalah persentase pengeluaran per kapita bulanan untuk makanan dan persentase bayi lahir dengan berat badan lahir rendah (BBLR).
========================================================================================================================================
In order to achieve the second goal of the Sustainable Development Goals (SDGs) to end hunger by 2030 and support national targets in reducing stunting prevalence, it is important to consider that stunting is a chronic nutritional problem influenced by various social, economic, and health factors, particularly before and after the COVID-19 pandemic. Although the prevalence of stunting decreased by 7.6% from 2019 to 2022, this figure still falls short of the national target of 14%. This study aims to model the prevalence of stunting in East Java using truncated spline regression, taking into account social, economic, and health predictor variables during this period. This method is chosen to capture the non-linear relationships between predictor variables and stunting prevalence. The data used includes the percentage of BPJS health insurance ownership among beneficiaries, the percentage of APBD budget realization for social assistance spending, the percentage of monthly per capita food expenditure, the percentage of infants under 6 months given exclusive breastfeeding, the percentage of infants born with low birth weight (LBW), and the percentage of pregnant women receiving iron supplementation tablets. The results of this study indicate that the best model is to use a combination of knot points 1,1,3,3,2,2 based on the minimum GCV value with variables that have a significant influence being the percentage of monthly per capita expenditure on food and the percentage of babies born with low birth weight (LBW).

Item Type: Thesis (Diploma)
Uncontrolled Keywords: GCV, Nonparametric Regression Truncated Spline, Child Stunting, Knot Point, GCV, Nonparametric Regression Truncated Spline, Child Stunting, Knot Point
Subjects: H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics
Q Science > QA Mathematics > QA401 Mathematical models.
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Sari Mega Puspita
Date Deposited: 01 Jul 2025 08:11
Last Modified: 01 Jul 2025 08:11
URI: http://repository.its.ac.id/id/eprint/119309

Actions (login required)

View Item View Item