Pratiwi, Martina Cahya (2025) Sistem Rekomendasi Berbasis Aturan Untuk Laporan Pemeriksaan Medis. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5026211144-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Pemeriksaan kesehatan merupakan penilaian menyeluruh terhadap kesehatan seseorang. Namun, pasien kesulitan memahami hasil pemeriksaan, sedangkan tenaga medis menghadapi beban kerja tinggi yang menyulitkan pemberian penjelasan rinci. Tugas akhir ini mengembangkan sistem rekomendasi hibrida berbasis aturan yang diimplementasikan ke dalam aplikasi berbasis web. Proses dimulai dengan melakukan akuisisi pengetahuan melalui wawancara dengan dokter spesialis patalogi klinis, kemudian pengetahuan tersebut ditransformasikan ke dalam aturan IF-THEN. Proses ini menghasilkan basis pengetahuan dengan 524 aturan, beberapa di antaranya dilengkapi 49 penjelasan XAI untuk istilah medis atau kalimat sulit. Sistem rekomendasi ini menggunakan algoritma forward chaining yang secara otomatis mencocokkan data pasien dengan aturan yang tersimpan di basis pengetahuan. Aplikasi berbasis web dikembangkan dengan Spring Boot Framework, Drools Rule Engine, dan iText PDF untuk sisi server dan Thymeleaf, Bootstrap, dan JavaScript untuk sisi klien. Aplikasi memungkinkan pengguna untuk memasukkan data pasien dan hasil pemeriksaan kesehatan, kemudian aplikasi menghasilkan laporan pemeriksaan kesehatan yang terpersonalisasi yang memuat data pasien, ringkasin hasil pemeriksaan, ringkasan rekomendasi, dan detail setiap parameter beserta rekomendasinya. Evaluasi dilakukan dilakukan melalui tinjauan ahli, pengujian tabel keputusan dengan rata-rata keberhasilan sebesar 96.67%, dan pengujian kegunaan secara kualitatif yang menunjukkan kepuasaan untuk aplikasi dan laporan. Tugas akhir ini diharapkan berkontribusi dalam mengurangi beban kerja dari para profesional medis dan meningkatkan pemahaman pasien terhadap hasil pemeriksaan kesehatan mereka.
========================================================================================================================================
Medical check-ups are comprehensive health assessments for individuals. However, patients often experience difficulty understanding medical check-up results, while health
workers experience limited time and heavy workloads that hinder providing detailed explanations. This final year project develops a hybrid rule-based recommendation system
implemented in a web-based application to generate personalized medical check-up reports. The development starts with knowledge acquisition through interviews with a clinical pathologist; then, the knowledge is organized and transformed into an IF-THEN rule format in Drools Rule Language. This process results in a knowledge base consisting of 524 rules, some of which are accompanied by 49 XAI explanations for medical terms or complex phrases. The
recommendation system implements a forward chaining algorithm that automatically matches patient data with the rules in the knowledge base. The web-based application is developed with Spring Boot Framework, Drools Rule Engine, and iText PDF for the backend side and Thymeleaf, Bootstrap, and JavaScript for the frontend side. The application allows users to input patient data and medical check-up results; then, it generates personalized medical check-up reports containing patient data, result summary, recommendation summary, and details of each parameter with their recommendations. The evaluation is conducted through expert
reviews, decision table testing with an average success rate of 96.67%, and qualitative usability testing that shows satisfaction with both the application and the reports. This final-year project is expected to contribute to decreasing health workers' workloads and increasing understanding
of patients' health status.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Pemeriksaan Kesehatan, Sistem Rekomendasi, Rekomendasi Kesehatan Personal, Berbasis Aturan, Pengetahuan Ahli, Medical Check-Up, Recommendation System, Personalized Health Recommendations, Rule-Based, Expert Knowledge |
Subjects: | Q Science > QA Mathematics > QA76.76.E95 Expert systems Q Science > QA Mathematics > QA76.9.I58 Recommender systems (Information filtering) |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis |
Depositing User: | Martina Cahya Pratiwi |
Date Deposited: | 07 Jul 2025 05:49 |
Last Modified: | 07 Jul 2025 05:49 |
URI: | http://repository.its.ac.id/id/eprint/119401 |
Actions (login required)
![]() |
View Item |