Darma, Maria Goretti Kalinda (2025) Implementasi Exponential Smoothing dan Robust Mean-Variance Optimization dalam Pembentukan Portofolio Optimal Saham Blue Chip. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5006211109-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (5MB) | Request a copy |
Abstract
Peningkatan literasi dan inklusi keuangan di Indonesia telah mendorong pertumbuhan jumlah investor di pasar modal. Salah satu dampak dari peningkatan ini adalah bertambahnya jumlah investor yang berpartisipasi di pasar saham, terutama pada saham blue chip. Saham blue chip menjadi pilihan utama bagi investor karena memiliki fundamental yang kuat, kapitalisasi pasar besar, likuiditas tinggi, serta kinerja perusahaan yang relatif stabil di berbagai kondisi ekonomi. Namun, fluktuasi harga saham tetap menjadi tantangan dalam pembentukan portofolio optimal. Oleh karena itu, diperlukan strategi yang tidak hanya mampu memproyeksikan harga saham secara akurat, tetapi juga mengoptimalkan portofolio dalam kondisi pasar yang tidak pasti serta mengukur risiko secara efektif. Penelitian ini bertujuan untuk mengimplementasikan metode exponential smoothing dalam peramalan harga saham dan Robust Mean-Variance Optimization (RMVO) dengan pendekatan Minimum Volume Ellipsoid (MVE) dan Minimum Covariance Determinant (MCD) dalam pembentukan portofolio optimal. Metode exponential smoothing dipilih karena kemampuannya menangkap pola harga secara adaptif, sedangkan pendekatan robust digunakan untuk meminimalkan pengaruh outlier dan ketidakpastian pasar dalam estimasi parameter return dan risiko. Risiko portofolio dievaluasi menggunakan Value at Risk (VaR) dan Tail Value at Risk (TVaR) melalui simulasi Monte Carlo. Data yang digunakan berupa harga penutupan saham harian dari enam saham blue chip, yaitu BBCA, TLKM, ASII, ADRO, KLBF, dan UNVR, selama periode 1 Januari 2022-31 Desember 2024. Hasil penelitian menunjukkan bahwa metode peramalan yang paling sesuai adalah Double Exponential Smoothing (DES) dengan nilai MAPE berkisar antara 2,74% hingga 8,41% yang termasuk kategori sangat baik. Dari hasil peramalan, hanya saham BBCA yang menunjukkan tren meningkat, sedangkan lima saham lainnya menurun. Berdasarkan sembilan kombinasi tingkat risk aversion, terbentuk 18 portofolio menggunakan estimator MVE dan MCD. Portofolio dengan rasio Sharpe tertinggi dihasilkan oleh estimator MCD, yaitu portofolio tunggal saham BBCA. Namun, portofolio yang lebih terdiversifikasi, yaitu yang terdiri dari 98,2% saham BBCA dan 1,8% saham TLKM juga menunjukkan kinerja yang baik. Hasil simulasi Monte Carlo menunjukkan bahwa estimasi risiko meningkat seiring meningkatnya tingkat kepercayaan. Portofolio dengan satu saham menunjukkan risiko yang lebih tinggi dibandingkan portofolio yang terdiversifikasi. Oleh karena itu, dapat disimpulkan bahwa portofolio optimal yang terbentuk dari penelitian ini adalah portofolio yang terdiri dari saham BBCA dan TLKM karena memberikan kinerja optimal dengan risiko yang lebih rendah.
=================================================================================================================================
The increase in financial literacy and inclusion in Indonesia has driven the growth in the number of investors in the capital market. One of the impacts of this increase is the growing number of investors participating in the stock market, particularly in blue chip stocks. Blue chip stocks have become the primary choice for investors because they have strong fundamentals, large market capitalization, high liquidity, and relatively stable company performance in various economic conditions. However, stock price fluctuations remain a challenge in forming an optimal portfolio. Therefore, a strategy is needed that not only projects stock prices accurately but also optimize the portfolio in uncertain market conditions and effectively measures risk. This research aims to implement the exponential smoothing method in stock price forecasting and Robust Mean-Variance Optimization (RMVO) with the Minimum Volume Ellipsoid (MVE) and Minimum Covariance Determinant (MCD) approaches in forming an optimal portfolio. The exponential smoothing was chosen for its ability to adaptively capture price patterns, while the robust approaches are used to minimize the influence of outliers and market uncertainty in estimating return and risk parameters. Portfolio risk is evaluated using Value at Risk (VaR) and Tail Value at Risk (TVaR) through Monte Carlo simulation. The data used consists of daily closing stock prices of six blue-chip stocks, namely BBCA, TLKM, ASII, ADRO, KLBF, and UNVR, during the period from January 1, 2022, to December 31, 2024. The results show that the most suitable forecasting method is Double Exponential Smoothing (DES), with MAPE values ranging from 2.74% to 8.41%, which fall under the “very good” category. From the forecasting results, only BBCA stock shows an upward trend, while the other five stocks show a decline. Based on nine combinations of risk aversion levels, 18 portfolios were constructed using the MVE and MCD estimators. The portfolio with the highest Sharpe ratio was generated by the MCD estimator, consisting solely of BBCA stock. However, a more diversified portfolio comprising 98.2% BBCA and 1.8% TLKM also showed strong performance. Monte Carlo simulation results indicate that risk estimates increase as the confidence level rises. Single stock portfolios exhibit higher risk compared to diversified ones. Therefore, it can be concluded that the optimal portfolio formed in this research is the one consisting of BBCA and TLKM stocks, as it offers optimal performance with lower risk.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Exponential Smoothing, Minimum Volume Ellipsoid, Minimum Covariance Determinant, Optimasi Portofolio, Value at Risk, Exponential Smoothing, Minimum Volume Ellipsoid, Minimum Covariance Determinant, Portfolio Optimization, Value at Risk |
Subjects: | H Social Sciences > HA Statistics > HA30.3 Time-series analysis H Social Sciences > HG Finance > HG4529.5 Portfolio management |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Actuaria > 94203-(S1) Undergraduate Thesis |
Depositing User: | Maria Goretti Kalinda Darma |
Date Deposited: | 11 Jul 2025 08:13 |
Last Modified: | 11 Jul 2025 08:13 |
URI: | http://repository.its.ac.id/id/eprint/119547 |
Actions (login required)
![]() |
View Item |