Santana, Fathan Muyassar (2025) Pengaruh Variasi Ketebalan Lapisan p/n terhadap Performa Sel Surya Lapisan Tipis Berbahan Karbon Biomassa: Studi Simulasi dan Eksperimen. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6001241009-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (9MB) | Request a copy |
Abstract
Krisis energi global telah mendorong pengembangan material alternatif untuk sel surya yang murah, ramah lingkungan, dan berkelanjutan. Biomassa menawarkan potensi sebagai sumber karbon yang melimpah dan dapat dimodifikasi secara kimia, sehingga menarik untuk dijadikan bahan penyusun lapisan aktif. Penelitian ini bertujuan untuk mengevaluasi performa sel surya lapisan tipis berbasis sambungan p–n dari karbon grafenik terdoping boron (BGC) dan karbon amorf terdoping nitrogen (aCN), melalui pendekatan simulasi dan eksperimental. Hasil simulasi menunjukkan bahwa peningkatan ketebalan lapisan p dapat meningkatkan efisiensi, dengan maksimum pada konfigurasi 1000/1000 nm. Sebaliknya, peningkatan tebal lapisan n justru menurunkan efisiensi. Simulasi juga menunjukkan bahwa penambahan lapisan intrinsik di antara p dan n dapat meningkatkan efisiensi hingga 0,10320% pada konfigurasi 200/400/200 nm. Namun, secara eksperimental hanya konfigurasi p–n yang difabrikasi dan diuji, dengan efisiensi tertinggi sebesar 0,0124% diperoleh pada struktur 200/200 nm. Hasil eksperimen ini belum sepenuhnya merefleksikan prediksi simulasi. Disparitas tersebut diduga disebabkan oleh sifat amorf material karbon, ketidakteraturan morfologi akibat proses deposisi berbasis biomassa, serta kualitas antarmuka p–n yang belum optimal. Studi ini menunjukkan bahwa meskipun material karbon berbasis biomassa memiliki potensi aplikatif untuk perangkat fotovoltaik, optimalisasi lebih lanjut diperlukan dalam aspek sintesis, doping, dan rekayasa antarmuka guna meningkatkan efisiensi dan performa perangkat secara keseluruhan.
=================================================================================================================================
The global energy crisis has driven the development of alternative materials for low-cost, environmentally friendly, and sustainable solar cells. Biomass offers potential as an abundant carbon source that can be chemically modified, making it attractive as an active layer material. This study aims to evaluate the performance of thin-film solar cells based on p–n junctions composed of boron-doped graphenic carbon (BGC) and nitrogen-doped amorphous carbon (aCN) through simulation and experimental. Simulation results indicate that increasing the thickness of the p-layer enhances efficiency, reaching a maximum at the 1000/1000 nm configuration. Conversely, increasing the n-layer thickness decreases the efficiency. Simulations also show that the inclusion of an intrinsic layer between the p and n layers can increase the efficiency up to 0,10320% for the 200/400/200 nm configuration. However, only the p–n configuration was fabricated and tested experimentally, yielding the highest efficiency of 0,0124% at the 200/200 nm structure. This experimental result does not fully reflect the simulation predictions. The discrepancy is likely due to the amorphous nature of the carbon materials, morphological irregularities resulting from biomass-based deposition processes, and suboptimal p–n interface quality. This study suggests that while biomass-derived carbon materials have promising potential for photovoltaic applications, further optimization in synthesis, doping, and interface engineering is required to enhance device efficiency and overall performance.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | AFORS-HET, Celah Pita, Karbon Biomassa, Lapisan Tipis, Sel Surya, FORS-HET, Band Gap, Biomass Carbon, Thin Film, Solar Cell. |
Subjects: | Q Science > Q Science (General) > Q180.55.M38 Mathematical models Q Science > QC Physics > QC162 Adsorption and absorption Q Science > QC Physics > QC389 Light--Transmission--Mathematical models. Q Science > QC Physics > QC451 Spectroscopy Q Science > QD Chemistry > QD341.H9 Graphene |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45101-(S2) Master Thesis |
Depositing User: | Unnamed user with username 6001241009 |
Date Deposited: | 14 Jul 2025 03:08 |
Last Modified: | 14 Jul 2025 03:08 |
URI: | http://repository.its.ac.id/id/eprint/119624 |
Actions (login required)
![]() |
View Item |