Dewa, Ghazzi and Aptanagi, Urdhanaka (2024) Penerapan Transfer Learning pada Model CNN untuk Klasifikasi Citra Endoskopi Gastronintestinal. Project Report. [s.n.], [s.l.]. (Unpublished)
![]() |
Text
5025201074_5025211123-Project_Report.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Penggunaan teknologi Artificial Intelligence (AI) di bidang kesehatan mulai banyak ditemui. Salah satu bentuk AI yang digunakan pada bidang kesehatan adalah image detection. Image detection dapat membantu dokter dan ahli kesehatan untuk memeriksa sebuah gambar apakah pada gambar tersebut terdapat sebuah objek yang ingin dideteksi seperti penyakit dalam organ pencernaan manusia. Kami membuat sebuah model dari pretrained model yang tersedia untuk mendeteksi beberapa penyakit pada organ pencernaan manusia. Salah satunya adalah colon polyps yang memiliki karakteristik tersendiri.
===================================================================================================================================
The use of Artificial Intelligence (AI) technology in the healthcare sector is becoming increasingly common. One form of AI applied in healthcare is image detection. Image detection can assist doctors and medical experts in analyzing images to determine whether there is a specific object present, such as a disease in the human digestive organs. We developed a model based on available pretrained models to detect several diseases in the human digestive system. One of them is colon polyps, which have their own distinct characteristics.
Item Type: | Monograph (Project Report) |
---|---|
Uncontrolled Keywords: | Image Detection, CNN, Gastrointestinal |
Subjects: | Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science) |
Divisions: | Faculty of Industrial Technology > Informatics Engineering > 55201-(S1) Undergraduate Thesis |
Depositing User: | Ghazzi Buana Dewa |
Date Deposited: | 17 Jul 2025 00:47 |
Last Modified: | 17 Jul 2025 00:47 |
URI: | http://repository.its.ac.id/id/eprint/119901 |
Actions (login required)
![]() |
View Item |