Dahoklory, Arthur Nimrod (2025) Analisis Perilaku Elemen Reduced Beam Section (RBS) Berdasarkan Variasi Pemotongan Flange Balok. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6012231117-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Setelah gempa Northrige (1994) dan gempa Kobe (1995), kerusakan pada sambungan momen banyak ditemui pada bangunan rangka baja. Hal ini sekaligus membuktikan bahwa sambungan konvensional menggunakan baut pada web dan las pada flange balok, atau lebih dikenal dengan sambungan pra-Northridge memiliki kelemahan yang mendasar dalam menerima beban gempa. Berbagai penelitian menunjukan kinerja yang buruk dari sambungan Pra-Northridge. Sambungan mengalami kegagalan getas pada flange kolom. Salah satu konsep yang digunakan untuk meningkatkan daktilitas struktur baja adalah: memperlemah balok dengan cara mereduksi sebagian dari flange atau web sedikit menjauh dari muka kolom yang akan memaksa terjadinya sendi plastis pada daerah balok yang tereduksi dan akan menyelamatkan sambungan antara balok-kolom. Salah satu jenis sambungan yang dapat meningkatkan daktilitas struktur adalah Reduced Beam Section (RBS). Sofias et al (2014), melakukan uji eksperimental mengenai sambungan balok-kolom dengan elemen balok RBS berbentuk radius cut. Studi ini akan melakukan pemodelan berdasarkan penelitian sebelumnya dengan variasi geometri RBS, yaitu RBS-R, RBS-Tr, RBS-Ta, RBS-S, RBS-D. Hubungan momen-rotasi akan dibandingkan antara uji eksperimen RBS radius cut dengan pemodelan RBS-R agar dapat melakukan pemodelan lanjutan berupa variasi geometri RBS. Hasil dari penelitian ini menunjukkan beban lateral maksimal untuk model RBS-D sebesar 93,92 KN, dan untuk model RBS-R sebagai model benchmark sebesar 82,42 KN. Ini menunjukkan bahwa kapasitas beban lateral model RBS-D meningkatkan kapasitas beban lateral sebesar 14% lebih besar dari kapasitas beban model RBS-R. Nilai daktilitas menunjukan Model RBS-D mampu memberikan peningkatan daktilitas dari model sambungan lainnya, yaitu sebesar 5,10% terhadap model RBS-R sebagai benchmark yang berkontribusi dalam menahan tekan dan tarik yang terjadi pada balok, sehingga tekuk lokal pada sayap dan badan balok dapat tertunda dan perilaku sambungan menjadi lebih stabil. Hasil dari analisa penurunan kekakuan, model RBS-D memiliki kekakuan yang paling baik dari variasi geometri RBS lainnya. Model RBS-D dapat meningkatkan kekakuan awal sambungan sebesar 4,65% dibandingkan model RBS-R. Untuk nilai disipasi energi, model RBS-D dapat meningkatkan penyerapan energi sebesar 14% dibandingkan model RBS-R sebagai model benchmark.
=================================================================================================================================
After the Northridge earthquake (1994) and the Kobe earthquake (1995), damage to moment connections was common in steel-frame buildings. This also proved that conventional connections using bolts on the web and welds on the beam flange, or better known as pre-Northridge connections, have fundamental weaknesses in accepting earthquake loads. Various studies have shown the poor performance of Pre-Northridge connections. The connection experienced brittle failure at the column flange. One of the concepts used to improve the ductility of steel structures is: weakening the beam by reducing a portion of the flange or web slightly away from the column face which will force a plastic joint in the reduced beam region and will save the beam-column connection. One type of connection that can increase the ductility of a structure is the Reduced Beam Section (RBS). Sofias et al (2014), conducted experimental tests on beam-column connections with radius cut RBS beam elements. This study will perform modeling based on previous research with a variety of RBS geometries, namely RBS-R, RBS-Tr, RBS-Ta, RBS-S, RBS-D. The moment-rotation relationship will be compared between the RBS radius cut experimental test and the RBS-R modeling in order to perform further modeling in the form of RBS geometry variations. The results of this study show that the maximum lateral load for the RBS-D model is 93,92 KN, and for the RBS-R model as the benchmark model is 82,42 KN. This shows that the lateral load capacity of the RBS-D model increases the lateral load capacity by 14% more than the load capacity of the RBS-R model. The ductility value shows that the RBS-D model is able to provide an increase in ductility from other connection models, which is 5,10% against the RBS-R model as a benchmark that contributes to resisting compressive and tensile stresses that occur in the beam, so that local buckling of the wings and body of the beam can be delayed and the connection behavior becomes more stable. As a result of the stiffness degradation analysis, the RBS-D model has the best stiffness of the other RBS geometry variations. The RBS-D model can increase the initial stiffness of the connection by 4,65% compared to the RBS-R model. For the energy dissipation value, the RBS-D model can increase the energy absorption by 14% compared to the RBS-R model as the benchmark model.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | RBS, sambungan balok-kolom, daktilitas, beban siklik, variasi geometri, RBS, beam-column connection, ductility, cyclic load, geometry variation |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA347 Finite Element Method T Technology > TA Engineering (General). Civil engineering (General) > TA645 Structural analysis (Engineering) T Technology > TA Engineering (General). Civil engineering (General) > TA658 Structural design |
Divisions: | Faculty of Civil Engineering and Planning > Civil Engineering > 22101-(S2) Master Thesis |
Depositing User: | Arthur Nimrod Dahoklory |
Date Deposited: | 21 Jul 2025 01:03 |
Last Modified: | 21 Jul 2025 01:03 |
URI: | http://repository.its.ac.id/id/eprint/120146 |
Actions (login required)
![]() |
View Item |