Desain Multi Input DC-DC Converter Berbasis Sistem Kontrol Cerdas MPPT untuk Multi Tipe Sumber Energi Terbarukan

Harmini, Harmini (2025) Desain Multi Input DC-DC Converter Berbasis Sistem Kontrol Cerdas MPPT untuk Multi Tipe Sumber Energi Terbarukan. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7022211026__Disertasion.pdf] Text
7022211026__Disertasion.pdf
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Tantangan utama dalam penerapan sistem hybrid Sumber Energi Terbarukan (EBT) adalah karakteristik tegangan keluaran yang umumnya rendah dan bersifat fluktuatif akibat variabilitas alamiah seperti Photovoltaic (PV) dan Wind Turbine (WT) serta Fuel Cell (FC). Ketidakstabilan tegangan dan kompleksitas dalam pengelolaan aliran daya semakin meningkat, terutama ketika melibatkan multi-input dengan karakteristik yang berbeda. Jaringan DC Bus memainkan peran penting dalam sistem hybrid yang berfungsi sebagai media integrasi utama antara berbagai sumber energi. Oleh karena itu, diperlukan sistem antarmuka converter yang tidak hanya mampu melakukan penguatan tegangan secara signifikan, tetapi juga dapat mempertahankan kestabilan tegangan keluaran dan mengatur distribusi daya secara adaptif dan independen. Tujuan penelitian ini adalah memodelkan dan mendesain arsitektur Multi Input High Step-up DC-DC Converter yang dilengkapi dengan sistem kontrol cerdas berbasis Adaptive Neuro-Fuzzy Inference System (ANFIS), untuk diaplikasikan pada sistem hybrid multi-tipe sumber EBT yang saling terkoordinasi. Dua desain topologi converter yang dikembangkan adalah Ultra-High Step-up DC-DC Converter dan Multi-Input Single Output – Quadratic Boost Converter (MISO-QBC). Sistem kontrol cerdas khususnya pada sistem FC diterapkan untuk mengelola fluktuasi daya input dan beban secara adaptif, sehingga mempertahankan tegangan tinggi keluaran DC Bus dengan stabil. Sistem cerdas Maximum Power Point Tracking (MPPT) juga dirancang menggunakan metode ANFIS yang diimplementasikan pada sumber energi PV dan WT. Metode independen sistem kontrol ANFIS mampu meningkatkan perfomansi jaringan DC-Bus secara efektif, sehingga mampu menjaga tegangan tinggi DC-Bus dan kontinuitas distribusi daya ke beban. Topologi Ultra High Step-up DC-DC Converter mampu menaikkan tegangan sebesar 9 kali, yaitu dari tegangan 45 hingga 400 V dengan toleransi sebesar 2,5%, sedangkan topologi Multi-Input Single-Output Quadratic Boost Converter (MISO-QBC) mampu menaikkan tegangan hingga 24 kali, yaitu dari rentang tegangan 24-54 V hingga menjadi 600 V dengan toleransi sebesar 0,7%. Implementasi algoritma MPPT pada PV dan WT menghasilkan efisiensi sebesar 90% untuk system PV dan 83,6% untuk system WT.
=====================================================================================================================================
The main challenge in implementing a hybrid renewable energy source (RES) system lies in the output voltage characteristics, which are typically low, fluctuating, and unstable due to the natural variability of sources such as Photovoltaic (PV) panels, Wind Turbines (WT), and Fuel Cells (FC). Voltage instability and the complexity of managing power flow between sources and loads become more pronounced, especially when the system involves multiple inputs with differing characteristics. The DC Bus network plays a critical role in hybrid RES. A converter is required to increase the voltage, maintain output voltage stability, and manage power distribution to the load adaptively and independently. The purpose of this study is to model and design a Multi-Input High Step-up DC-DC Converter architecture equipped with an intelligent control system based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). Two converter topology designs were developed for implementation in the hybrid system, each serving a specific function: the Ultra-High Step-up DC-DC Converter and the Multi-Input Single-Output Quadratic Boost Converter (MISO-QBC). The intelligent control system, particularly in the FC (Fuel Cell) subsystem, is applied to manage input power and load fluctuations adaptively, thereby maintaining a stable high-voltage DC Bus output. An intelligent Maximum Power Point Tracking (MPPT) system is designed using the ANFIS method and implemented in PV and WT energy sources to optimally extract maximum power
The ANFIS-based independent control method effectively maintains the stability of the DC network, even in the presence of fluctuations in solar irradiation, wind speed, and load power. The DC bus voltage was consistently stable. This method ensures continuous power distribution to the load while maintaining the balance of the hybrid system. The Ultra High Step-up DC-DC Converter topology is capable of increasing the voltage by 9 times from 45 V to 400 V with a tolerance of 2.5%. The Multi-Input Single-Output Quadratic Boosting Converter (MISO-QBC) topology can boost the voltage up to 24 times from 24–54 to 600 V with a tolerance of 0.7%. The implementation of the MPPT algorithm on the PV and WT systems achieved efficiencies of 90% and 83.6%, respectively

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Multi Input DC-DC Converter, High Step-up, ANFIS, Energi Terbarukan, Sistem Hybrid Multi Input DC-DC Converter, High Step-up, ANFIS, Renewable Energy Source, Hybrid System
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1087 Photovoltaic power generation
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2931 Fuel cells
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK531 Current and voltage waveforms
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7872 Electric current converters, Electric inverters.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20001-(S3) PhD Thesis
Depositing User: Harmini Harmini
Date Deposited: 21 Jul 2025 06:32
Last Modified: 21 Jul 2025 06:32
URI: http://repository.its.ac.id/id/eprint/120280

Actions (login required)

View Item View Item