Nurrani, Afiyah (2025) Penerapan Algoritma Grey Wolf Optimizer (GWO) pada Steganografi Citra Digital. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5002211035-Undergraduate_Thesis.pdf Restricted to Repository staff only Download (9MB) | Request a copy |
Abstract
Manusia merupakan makhluk sosial yang setiap hari akan melakukan interaksi. Perantara komunikasi akan menentukan kerahasiaan pesan dan potensi pesan dicurigai. Berbagai media telah digunakan sebagai alat komunikasi, salah satunya adalah citra. Penyampaian pesan bisa dilakukan secara rahasia dengan menyembunyikan teks tersebut ke dalam citra atau yang biasa dikenal dengan steganografi. Salah satu metode dalam steganografi adalah metode Least Significant Bit (LSB), dimana bit pesan disimpan pada bit terakhir citra. Pemilihan bit terakhir pada citra digunakan supaya citra tidak mengalami perubahan secara signifikan. Pada metode LSB, bit pesan akan disisipkan secara berurutan pada piksel citra. Hal ini akan membuat pesan mudah terdeteksi. Pada tugas akhir ini telah dibahas terkait penerapan algoritma Grey Wolf Optimizer (GWO) untuk menentukan lokasi penyimpanan pesan pada citra secara acak. Lokasi penyimpanan yang ditentukan melalui algoritma GWO akan digunakan sebagai penyembunyian pesan. Algoritma GWO menentukan lokasi penyimpanan berdasarkan nilai tertinggi PSNR citra pada populasi yang telah ditentukan. Pengujian encoding dan decoding berhasil pada semua format citra kecuali pada format JPEG, karena format ini bersifat lossy. Pengujian nilai PSNR dengan penyisipan pesan 111 karakter, 641 karakter, dan 4680 karakter menghasilkan nilai PSNR >51dB dan nilai SSIM >0,93. Banyaknya populasi dan iterasi yang digunakan pada algoritma GWO berpengaruh terhadap Waktu eksekusi penyisipan pesan dan eksplorasi pemilihan lokasi piksel.
================================================================================================================================
Humans are social creatures who will interact every day. The communication medium will determine the confidentiality of the message and the potential for the message to be suspected. Various media have been used as a communication tool, one of which is an image. The delivery of messages can be done in secret by hiding the text into the image or commonly known as steganography. One of the methods in steganography is the Least Significant Bit (LSB) method, where the message bits are stored in the last bit of the image. The selection of the last bit in the image is used so that the image does not change significantly. In the LSB method, the message bits will be inserted sequentially in the image pixels. This will make the message easy to detect. In this final project, it has been discussed related to the application of the Grey Wolf Optimizer (GWO) algorithm to determine the location of message storage in a random image. The storage location determined through the GWO algorithm will be used as message hiding. The GWO algorithm determines the storage location based on the highest value of image PSNR in a predetermined population. Testing encoding and decoding is successful in all image formats except in JPEG format, because this format is lossy. PSNR value testing with message insertion of 111 characters, 641 characters, and 4680 characters resulted in a PSNR value of > 51dB and an SSIM value of > 0.93. The number of populations and iterations used in the GWO algorithm affects the execution time of message insertion and exploration of pixel location selection.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Citra Digital, Grey Wolf Optimization (GWO), Least Significant Bit (LSB), Steganografi. Digital image, Grey Wolf Optimizer (GWO), Least Significant Bit (LSB), Peak Signal-to-Noise Ratio (PSNR), Steganography. |
Subjects: | Q Science > QA Mathematics > QA76.76.A63 Application program interfaces Q Science > QA Mathematics > QA76.9.A25 Computer security. Digital forensic. Data encryption (Computer science) Q Science > QA Mathematics > QA9.58 Algorithms |
Divisions: | Faculty of Mathematics, Computation, and Data Science > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Afiyah Nurrani |
Date Deposited: | 22 Jul 2025 04:26 |
Last Modified: | 22 Jul 2025 04:26 |
URI: | http://repository.its.ac.id/id/eprint/120457 |
Actions (login required)
![]() |
View Item |