Suharyanto, Zahra Putri Callibri (2025) Pemanfaatan Citra Landsat 9 dan Metode MCDA untuk Analisis Daerah Rawan Banjir di Kabupaten Bekasi. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5016211104-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (8MB) | Request a copy |
Abstract
Penelitian ini bertujuan untuk mengidentifikasi dan menganalisis daerah rawan banjir di Kabupaten Bekasi menggunakan citra satelit Landsat 9 dan metode Multi-Criteria Decision Analysis (MCDA). Kabupaten Bekasi dipilih sebagai lokasi penelitian karena sering mengalami banjir akibat curah hujan yang tinggi, drainase yang buruk, dan perubahan penggunaan lahan. Data yang digunakan meliputi citra Landsat 9, data curah hujan CHIRPS, DEMNAS, jenis tanah, dan Luas Daerah Aliran Sungai (DAS). Parameter analisis meliputi tutupan lahan, elevasi lahan, kemiringan lereng, curah hujan, jenis tanah, dan jarak dari sungai (penyangga). Hasil penelitian menunjukkan bahwa 81,345% wilayah dikategorikan rawan banjir, terutama di daerah dataran rendah (<10 m) dengan tutupan lahan permukiman yang padat dan curah hujan tinggi (>2.500 mm/tahun). Peta kerentanan banjir yang dihasilkan mengklasifikasikan wilayah menjadi empat tingkat risiko: Sangat Rentan (3,677%), Rentan (81,345%), Tidak Rentan (10,952%), dan Aman (4,026%). Temuan-temuan ini memberikan dasar ilmiah untuk memprioritaskan pembangunan infrastruktur drainase di beberapa wilayah rentan dan sistem peringatan dini berbasis SIG bagi masyarakat. Peta kerentanan banjir skala 1:150.000 yang dihasilkan dari integrasi parameter-parameter ini dapat menjadi dasar ilmiah bagi pemerintah daerah dalam perencanaan mitigasi bencana, pengendalian perubahan penggunaan lahan, dan pengambilan keputusan berbasis data. Studi ini juga mengoptimalkan teknologi penginderaan jauh untuk pemantauan risiko bencana spasial.
===========================================================================================================================================
This study aims to identify and analyze flood-prone areas in Bekasi Regency using Landsat 9 satellite imagery and the Multi-Criteria Decision Analysis (MCDA) method. Bekasi Regency was chosen as the study location because it often experiences flooding due to high rainfall, poor drainage, and changes in land use. The data used include Landsat 9 imagery, CHIRPS rainfall data, DEMNAS, soil type, and Watershed Area. Analysis parameters include land cover, land elevation, slope, rainfall, soil type, and distance from the river (buffer). The results show that 81.345% of the area is categorized as flood-prone, especially in lowland areas (<10 m) with dense residential land cover and high rainfall (>2,500 mm/year). The resulting flood vulnerability map classifies areas into four risk levels: Very Vulnerable (3.677%), Vulnerable (81.345%), Not Vulnerable (10.952%), and Safe (4.026%). These findings provide a scientific basis for prioritizing the development of drainage infrastructure in several vulnerable areas and a GIS-based early warning system for the community. The 1:150,000 scale flood vulnerability map generated from the integration of these parameters can be a scientific basis for local governments in disaster mitigation planning, land use change control, and data-based decision making. This study also optimizes remote sensing technology for spatial disaster risk monitoring.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Banjir, Kabupaten Bekasi, Landsat 9, MCDA, Sistem Informasi Geografis, Flood, Bekasi Regency, Landsat 9, MCDA, Geographic Information System |
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems. G Geography. Anthropology. Recreation > G Geography (General) > G70.217 Geospatial data G Geography. Anthropology. Recreation > G Geography (General) > G70.5.I4 Remote sensing |
Divisions: | Faculty of Civil Engineering and Planning > Geomatics Engineering > 29202-(S1) Undergraduate Thesis |
Depositing User: | Zahra Putri Callibri Suharyanto |
Date Deposited: | 22 Jul 2025 06:40 |
Last Modified: | 22 Jul 2025 06:40 |
URI: | http://repository.its.ac.id/id/eprint/120530 |
Actions (login required)
![]() |
View Item |