Analisis Estimasi Kualitas Udara Berdasarkan Konsentrasi So₂ Dan Pm-10 Menggunakan Citra Landsat 8 Dan 9 Secara Spatio Temporal (Studi Kasus : Kabupaten Tuban Tahun 2020 – 2025)

Rafi, Damar (2025) Analisis Estimasi Kualitas Udara Berdasarkan Konsentrasi So₂ Dan Pm-10 Menggunakan Citra Landsat 8 Dan 9 Secara Spatio Temporal (Studi Kasus : Kabupaten Tuban Tahun 2020 – 2025). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5016211067-Undergraduate_Thesis.pdf] Text
5016211067-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (9MB) | Request a copy

Abstract

Penelitian ini bertujuan untuk memetakan sebaran spasial polutan udara berupa sulfur dioksida (SO₂) dan partikel halus (PM-10) di Kabupaten Tuban. Pencemaran udara dari aktivitas industri dapat memberikan dampak negatif terhadap kesehatan dan lingkungan sekitar. Metode yang digunakan melibatkan pemanfaatan data citra satelit Landsat 8 dan 9, Sentinel-5P Tropomi, serta data pengukuran kualitas udara dari Dinas Lingkungan Hidup (DLH) Kabupaten Tuban. Seluruh data diolah menggunakan perangkat lunak SNAP dan dianalisis berdasarkan perhitungan Indeks Standar Pencemar Udara (ISPU). Hasil penelitian menunjukkan bahwa konsentrasi SO₂ tertinggi tercatat sebesar 95 µg/m³ pada tahun 2023 dan terendah 33 µg/m³ pada tahun 2021. Untuk PM-10, nilai tertinggi tercatat sebesar 203 µg/m³ pada tahun 2021 dan terendah 0 µg/m³ pada beberapa lokasi. Nilai ISPU untuk SO₂ berada pada kategori “Baik” hingga “Sedang”, dengan ISPU tertinggi sebesar 90,6. Sementara itu, ISPU PM-10 berada pada kategori “Sedang” hingga “Tidak Sehat”, dengan nilai tertinggi 120,2 pada tahun 2021. Nilai korelasi antara data Landsat dengan Sentinel-5P dan DLH masih tergolong rendah, yaitu 0,166 untuk SO₂ (2021) dan 0,085 untuk PM-10 (2023). Dari analisis spasial terlihat bahwa wilayah pertambangan berkontribusi terhadap peningkatan konsentrasi PM-10, sebagaimana ditunjukkan oleh hasil pertampalan data tutupan lahan dengan sebaran polutan.

===========================================================================================================================================

This study aims to map the spatial distribution of air pollutants, specifically sulfur dioxide (SO₂) and particulate matter (PM-10), in Tuban Regency. Air pollution from industrial activities can negatively impact public health and the surrounding environment. The methodology involves utilizing satellite imagery from Landsat 8 and 9, Sentinel-5P Tropomi, and air quality measurement data from the Environmental Agency (DLH) of Tuban Regency. All data were processed using SNAP software and analyzed based on the Air Pollution Standard Index (ISPU). The results show that the highest SO₂ concentration was recorded at 95 µg/m³ in 2023, with the lowest at 33 µg/m³ in 2021. For PM-10, the highest value was 203 µg/m³ in 2021, while the lowest was 0 µg/m³ at several observation points. The ISPU for SO₂ ranged from "Good" to "Moderate", with the highest index value reaching 90.6. Meanwhile, the ISPU for PM-10 ranged from "Moderate" to "Unhealthy", peaking at 120.2 in 2021. The correlation between Landsat data and those from Sentinel-5P and DLH was relatively low, with a value of 0.166 for SO₂ (2021) and 0.085 for PM-10 (2023). Spatial analysis indicated that mining areas contribute to higher PM-10 concentrations, as evidenced by the overlay of land cover data with pollutant distribution maps.

Item Type: Thesis (Other)
Uncontrolled Keywords: pencemaran udara, SO₂, PM-10, ISPU, Landsat, Sentinel-5P, Tuban, air pollution
Subjects: G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems.
G Geography. Anthropology. Recreation > G Geography (General) > G70.217 Geospatial data
G Geography. Anthropology. Recreation > G Geography (General) > G70.5.I4 Remote sensing
T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques. Image analysis--Data processing.
Divisions: Faculty of Civil, Environmental, and Geo Engineering > Geomatics Engineering > 29202-(S1) Undergraduate Theses
Depositing User: Damar Rafi
Date Deposited: 22 Jul 2025 06:34
Last Modified: 22 Jul 2025 06:34
URI: http://repository.its.ac.id/id/eprint/120553

Actions (login required)

View Item View Item