Kristianto, Vincensius Nugroho (2025) Identifikasi Potensi Kegagalan Keamanan Siber Sistem Kendali Industri Klasik Dan Modern Menggunakan Metode Machinery Failure Modes And Effect Analysis. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6022231012-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (7MB) | Request a copy |
Abstract
Konvergensi antara Teknologi Informasi (IT) dan Teknologi Operasi (OT) dalam sistem kendali industri modern telah menghadirkan tantangan baru dalam keamanan siber, terutama ketika sistem lama (legacy system) mulai ditambahkan dengan komponen digital. Penelitian ini bertujuan untuk mengidentifikasi potensi kegagalan keamanan siber pada sistem kendali industri klasik dan modern dengan menggunakan metode Machinery Failure Modes and Effect Analysis. Dengan menerapkan kerangka MFMEA pada berbagai level dalam Model Purdue (Level 0–3), penelitian ini mengevaluasi tingkat keparahan (severity), frekuensi kejadian (occurrence), dan kemampuan deteksi (detection) dari risiko keamanan siber, serta menghasilkan nilai Risk Priority Number (RPN) untuk mengidentifikasi kerentanan paling kritis. Hasil penelitian menunjukkan bahwa sistem kendali klasik memiliki tingkat kerentanan tertinggi pada level supervisi dan operasional (Level 2 dan 3), akibat arsitektur yang sudah usang dan belum mengadopsi protokol keamanan siber. Sementara itu, sistem kendali modern menunjukkan risiko tertinggi pada level perangkat lapangan (Level 0), yang sering kali minim perlindungan keamanan siber. Melalui wawancara dan diskusi kelompok terfokus dengan para ahli, penelitian ini menghasilkan rekomendasi konkret untuk mitigasi risiko dan peningkatan keamanan siber, yang disesuaikan dengan standar IEC 62443. Penelitian ini menjembatani kesenjangan antara teori keamanan siber dan implementasi di lapangan, serta menawarkan pendekatan terstruktur untuk meningkatkan ketahanan siber pada lingkungan kendali industri hibrida maupun modern.
===================================================================================================================================
The convergence of Information Technology (IT) and Operational Technology (OT) in modern industrial control systems has led to new cybersecurity challenges, especially as legacy systems are retrofitted with digital components. This thesis aims to identify potential cybersecurity failure modes in both classic and modern industrial control systems using the Machinery Failure Modes and Effect Analysis method. By applying the MFMEA framework to various layers of the Purdue Model (Levels 0–3), the study evaluates severity, occurrence, and detection levels of cybersecurity risks, producing Risk Priority Numbers (RPNs) to identify the most critical vulnerabilities. The study reveals that classic control systems are most vulnerable at supervisory and operational levels (Levels 2 and 3), due to outdated architecture lacking cybersecurity protocols. In contrast, modern control systems exhibit higher risk at the field device level (Level 0), where cyber protections are often limited. Through expert interviews and focus group discussions, this research generates practical cybersecurity recommendations based on identified weaknesses and proposes mitigation strategies aligned with IEC 62443 standards.
This study bridges the gap between theoretical cybersecurity frameworks and real-world applications in industrial settings, offering a structured approach to improve cyber resilience in hybrid and modern control environments
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Keamanan Siber, Sistem Kendali Industri, IEC 62443, Identifikasi Kegagalan, Operational Technology, Cybersecurity, Industrial Control System, IEC 62443, Failure Identification, Operational Technology |
Subjects: | Q Science > QA Mathematics > QA76.9.A25 Computer security. Digital forensic. Data encryption (Computer science) |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20101-(S2) Master Thesis |
Depositing User: | Kristianto Vincensius Nugroho |
Date Deposited: | 24 Jul 2025 02:55 |
Last Modified: | 24 Jul 2025 02:55 |
URI: | http://repository.its.ac.id/id/eprint/120766 |
Actions (login required)
![]() |
View Item |