Deteksi Gangguan Series AC Arc Fault Untuk Sistem Yang Mengalami Gangguan Kualitas Daya Harmonik Berbasis Gabor Transform Dan Artificial Neural Network

Haholongan, Jemister Wahono (2025) Deteksi Gangguan Series AC Arc Fault Untuk Sistem Yang Mengalami Gangguan Kualitas Daya Harmonik Berbasis Gabor Transform Dan Artificial Neural Network. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5022211204-Undergraduate_Thesis.pdf] Text
5022211204-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Registered users only

Download (4MB) | Request a copy

Abstract

Gangguan series AC arc fault merupakan kondisi berbahaya penyebab kebakaran yang sulit dideteksi oleh pemutus sirkuit konvensional karena arusnya yang cenderung rendah. Keberadaan distorsi harmonik pada sistem tenaga listrik modern semakin mempersulit proses deteksi gangguan ini. Penelitian ini bertujuan untuk mengembangkan dan memvalidasi sebuah metode deteksi series AC arc fault yang akurat dan andal pada sistem yang mengalami gangguan kualitas daya harmonik. Metode yang diusulkan menggunakan Transformasi Gabor untuk menganalisis sinyal dalam domain waktu-frekuensi dan mengekstraksi fitur-fiturnya, yang kemudian diklasifikasikan menggunakan Artificial Neural Network (ANN). Pengujian dilakukan pada empat kondisi sinyal (normal, arc fault, harmonik dengan gangguan arc fault, dan harmonik) menggunakan data yang diperoleh dari simulasi MATLAB dan percobaan eksperimental dengan arc generator. Hasil penelitian menunjukkan bahwa Transformasi Gabor mampu secara efektif membedakan karakteristik setiap kondisi gangguan. Model ANN dengan arsitektur optimal berhasil mencapai akurasi klasifikasi sebesar 100% pada seluruh data uji, baik simulasi maupun eksperimen, dengan Mean Squared Error (MSE) yang sangat rendah. Penelitian ini membuktikan bahwa kombinasi Transformasi Gabor dan ANN merupakan solusi yang sangat efektif untuk deteksi arc fault di lingkungan kelistrikan yang kompleks, serta menawarkan potensi besar untuk diaplikasikan pada sistem proteksi guna meningkatkan keselamatan kelistrikan.
===================================================================================================================================
A series AC arc fault is a hazardous, fire-causing condition that is difficult to detect with conventional circuit breakers due to its low fault current. The presence of harmonic distortion in modern power systems further complicates the detection process. This research aims to develop and validate an accurate and reliable series AC arc fault detection method for systems experiencing harmonic power quality disturbances. The proposed method utilizes the Gabor Transform to analyze signals in the time-frequency domain and extract their distinctive features , which are then classified using an Artificial Neural Network (ANN). The system was tested on four signal conditions (normal, arc fault, harmonic, and a combined state) using data from both MATLAB simulations and experimental measurements from an arc generator. The results demonstrate that the Gabor Transform can effectively differentiate the characteristics of each condition. The optimal ANN model successfully achieved a classification accuracy of 100% on all test data, for both simulation and experiment, with a very low Mean Squared Error (MSE). This study proves that the combination of Gabor Transform and ANN is a highly effective solution for arc fault detection in complex electrical environments, offering significant potential for application in smart protection systems to enhance electrical safety.

Item Type: Thesis (Other)
Uncontrolled Keywords: Arc fault, Deteksi Arc Fault, Kualitas Daya, Gangguan harmonik, Transformasi Gabor, Artificial Neural Network (ANN),Arc Fault, Arc Fault Detection, Power Quality, Harmonic Disturbances, Gabor Transform, Artificial Neural Network (ANN)
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1010 Electric power system stability. Electric filters, Passive.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK152.A75 Electrical engineering--Safety measures
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3226 Transients (Electricity). Electric power systems. Harmonics (Electric waves).
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK351 Electric measurements.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Jemister Wahono Haholongan
Date Deposited: 24 Jul 2025 03:35
Last Modified: 24 Jul 2025 03:35
URI: http://repository.its.ac.id/id/eprint/121021

Actions (login required)

View Item View Item