Analisis Faktor Yang Memengaruhi Masyarakat Beralih Dari Rumah Sakit Ke Mobile Health Dengan Menggunakan Model Partial Least Square – Structural Equation Modeling

Hutahaean, Alodia Angelica (2025) Analisis Faktor Yang Memengaruhi Masyarakat Beralih Dari Rumah Sakit Ke Mobile Health Dengan Menggunakan Model Partial Least Square – Structural Equation Modeling. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5026211137-Undergraduate_Thesis.pdf] Text
5026211137-Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Konteks : Pesatnya perkembangan teknologi digital telah mempercepat transformasi dalam sistem layanan kesehatan, khususnya melalui adopsi Mobile Health (mHealth) di Indonesia. Layanan mHealth menawarkan akses kesehatan yang lebih fleksibel, efisien, dan terjangkau, terutama setelah pandemi COVID-19 yang mempercepat adopsi layanan kesehatan berbasis aplikasi. Di tengah persaingan berbagai platform mHealth dan tingginya ekspektasi konsumen terhadap keamanan data serta kualitas layanan, penting untuk memahami faktor-faktor yang mendorong perilaku masyarakat dalam beralih dari layanan kesehatan konvensional ke layanan mHealth.
Permasalahan : Meskipun penggunaan mHealth meningkat, masih terbatas penelitian yang mengidentifikasi faktor utama yang memengaruhi switching behavior masyarakat terhadap layanan mHealth, termasuk peran intensi untuk beralih dan loyalitas yang tercermin dari niat merekomendasikan. Terlebih lagi, Perceived Security Risk terhadap keputusan pengguna masih menjadi perdebatan dan memerlukan analisis lebih lanjut.
Tujuan : Penelitian ini bertujuan untuk menganalisis pengaruh faktor push (Satisfaction, Trust, Price Perception), pull (Information Quality, Service Quality, System Quality), dan mooring (Attitude Toward Switching, Subjective Norm, Switching Cost, Variety Seeking) terhadap Switching Intention, serta dampaknya terhadap Switching Behavior pengguna layanan kesehatan di Indonesia. Selain itu, penelitian ini juga menguji peran Perceived Security Risk (PSR) sebagai faktor baru yang memengaruhi Switching Intention, dan menelusuri peran moderasi dari Mooring Factor. Metode : Penelitian ini menggunakan pendekatan Partial Least Square – Structural Equation Modeling (PLS-SEM) untuk menganalisis hubungan antar variabel. Data dikumpulkan melalui kuesioner daring kepada 265 responden, dengan 172 data valid dari pengguna aktif mHealth berusia 17–60 tahun. Penelitian ini menggunakan Higher Order Construct (HOC) dan validasi model dilakukan melalui pengujian outer dan inner model menggunakan SmartPLS 4.
Hasil : Hasil penelitian menunjukkan bahwa Pull Factor, Mooring Factor, dan Perceived Security Risk memiliki pengaruh signifikan terhadap Switching Intention, sedangkan Push Factor tidak signifikan. Switching Intention juga berpengaruh positif dan signifikan terhadap Switching Behavior. Selain itu, moderasi Mooring Factor terhadap hubungan PSF–SI signifikan, namun tidak signifikan terhadap hubungan PUF–SI. Rekomendasi diberikan untuk mengoptimalkan kualitas layanan, keamanan data, serta penyusunan strategi retensi pengguna aplikasi mHealth di Indonesia. Rekomendasi strategi ini berupa intergrasi fitur pengaduan langsung pada aplikasi, membagun loyalitas dan habit usage dengan program pengumpulan poin, mengoptimalkan quality system, melibatkan peer influencers untuk menguatkan social norms, menawarkan akses uji coba gratis, dan peningkatan literasi digital untuk masyarakat Indonesia. Nilai Tambah : Penelitian ini memberikan kontribusi teoretis melalui validasi ulang model PPM dengan penambahan variabel keamanan data pribadi dan pendekatan HOC dalam konteks layanan mHealth di Indonesia. Secara praktis, hasil penelitian ini dapat dijadikan acuan bagi pengembang dan penyedia layanan mHealth dalam menyusun strategi peningkatan adopsi dan loyalitas pengguna melalui layanan yang aman, informatif, dan berorientasi pada pengalaman pelanggan.
================================================================================================================================================
Context: The rapid advancement of digital technology has accelerated the transformation of healthcare services, particularly through the adoption of Mobile Health (mHealth) in Indonesia. mHealth services offer more flexible, efficient, and affordable access to healthcare, especially following the COVID-19 pandemic which significantly boosted the adoption of application-based health services. Amidst the competition among various mHealth platforms and rising consumer expectations regarding data security and service quality, it is crucial to understand the driving factors behind the public’s switching behavior from conventional healthcare to mHealth services. Problem: Although the usage of mHealth is increasing, limited studies have thoroughly identified the key factors influencing people’s switching behavior toward mHealth services, including the role of switching intention and loyalty, as reflected in recommendation intentions. Moreover, the influence of Perceived Security Risk on users’ decisions remains a subject of debate and requires further analysis.
Objective: This study aims to analyze the influence of push factors (Satisfaction, Trust, Price Perception), pull factors (Information Quality, Service Quality, System Quality), and mooring factors (Attitude Toward Switching, Subjective Norm, Switching Cost, Variety Seeking) on Switching Intention and its impact on Switching Behavior among mHealth users in Indonesia. Additionally, the study investigates the role of Perceived Security Risk (PSR) as a new factor influencing Switching Intention, and examines the moderating effect of the Mooring Factor. Method: This research employs the Partial Least Squares – Structural Equation Modeling (PLS-SEM) approach to analyze the relationships among variables. Data were collected through an online questionnaire distributed to 265 respondents, with 172 valid responses from active mHealth users aged 17–60 years. The study applies a Higher Order Construct (HOC) approach, with model validation conducted through outer and inner model testing using SmartPLS 4. Results: The results of this study indicate that Pull Factor, Mooring Factor, and Perceived Security Risk significantly influence Switching Intention, whereas Push Factor does not. Switching Intention also has a positive and significant effect on Switching Behavior. Furthermore, the moderation of Mooring Factor on the relationship between PSF (Perceived Security Risk) and Switching Intention is significant, while its moderation on the relationship between Push Factor and Switching Intention is not. Strategic recommendations are proposed to optimize service quality, data security, and user retention strategies for mHealth applications in Indonesia. These strategies include integrating a direct complaint feature within the application, building user loyalty and habitual usage through point-based reward programs, optimizing system quality, engaging peer influencers to strengthen social norms, offering free trial access, and enhancing digital literacy among Indonesian users. Value Added: This study offers theoretical contributions by revalidating the Push-Pull-Mooring (PPM) framework through the addition of a data security variable and the application of the HOC approach in the context of mHealth services in Indonesia. Practically, the findings serve as a reference for mHealth developers and providers in designing strategies to increase user adoption and loyalty through secure, informative, and customer-experience-oriented services.

Item Type: Thesis (Other)
Uncontrolled Keywords: Mobile Health, Push Pull Mooring, Switching Intentions, Switching Behavior, Partial Least Squere- Structural Method (PLS-SEM), Mobile Health, Push Pull Mooring, Switching Intentions, Switching Behavior, Partial Least Squere- Structural Method (PLS-SEM).
Subjects: Q Science > QA Mathematics > QA278.3 Structural equation modeling.
R Medicine > R Medicine (General) > R727.3 Patient satisfaction.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis
Depositing User: Alodia Angelica Hutahaean
Date Deposited: 25 Jul 2025 04:51
Last Modified: 25 Jul 2025 04:51
URI: http://repository.its.ac.id/id/eprint/121682

Actions (login required)

View Item View Item