Prakoso, Wahyu (2025) Optimalisasi Produksi Energi Pada PLTA Run-Of-River Menggunakan Algoritma Dynamic Programming Berdasarkan Prediksi Inflow. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6022231047-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (1MB) | Request a copy |
Abstract
Air sebagai sumber energi primer pada Pembangkit Listrik Tenaga Air (PLTA) memiliki peran penting dalam produksi energi listrik. PLTA dengan jenis run-ofriver sangat dipengaruhi oleh variabilitas curah hujan dan perubahan kondisi cuaca. Fluktuasi kondisi volume air pada PLTA jenis run-of-river berdampak pada produksi energi listrik yang kurang optimal. Kondisi ini berakibat pada kehilangan potensi produksi energi listrik karena air yang limpas atau ketidaksiapan PLTA akibat kurangnya energi primer. Oleh karena itu, diperlukan strategi dalam pemanfaatan air sebagai energi primer melalui pola operasi PLTA yang tepat. Penelitian ini bertujuan untuk mengembangkan metode optimalisasi produksi energi pada PLTA jenis run-of-river melalui penerapan algoritma dynamic programming yang didasarkan pada prediksi inflow. Metodologi yang diusulkan meliputi beberapa tahapan utama: pertama, prediksi inflow menggunakan model berbasis data historis dan variabel meteorologi; kedua, formulasi model dynamic programming untuk menentukan produksi energi paling optimal; dan ketiga, implementasi algoritma serta simulasi untuk mengevaluasi hasilnya. Evaluasi akan dilakukan dengan membandingkan produksi energi sebelum dan sesudah penerapan algoritma. Simulasi pada penelitian ini menunjukkan hasil positif berupa potensi peningkatan produksi energi sebesar 18,01% dan penurunan volume air yang limpas sebesar 62,09%, sehingga metode yang dikembangkan terbukti adaptif terhadap variabilitas inflow dan memiliki potensi untuk meningkatkan kontribusi PLTA dalam penyediaan energi bersih untuk akselerasi energi baru terbarukan (EBT).
======================================================================================================================================
Water, as the primary energy source in hydropower plants, constitutes a fundamental component in conversion of hydraulic potential into energy. Run-of-river type hydropower plants are highly susceptible to rainfall variability and dynamic weather conditions. Fluctuations in water volume in such systems often result in suboptimal electricity generation. These circumstances may lead to the loss of potential energy production due to water spillage or operational limitations caused by inadequate water supply. Therefore, a strategic approach to water utilization as a primary energy input through optimized plant operation is essential. This study aims to develop a method for optimizing energy production in run-of-river hydropower plants by applying a dynamic programming algorithm integrated with inflow forecasting. The methodology involves predicting inflow using machine learning models trained on historical and meteorological data, constructing a dynamic programming framework to determine optimal generation schedules based on forecasted inflow, and performing implementation and simulation to evaluate operational outcomes. The performance of the proposed method will be assessed by comparing energy production metrics before and after the integration of the algorithm. imulations in this study demonstrated positive outcomes, with a potential increase in energy production of 18.01% and a reduction in spillway discharge volume of 62.09%, proving the developed method to be adaptive to inflow variability and supporting the enhancement of HPP contributions to clean energy supply as part of renewable energy acceleration..
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | penggunaan air, dynamic programming, inflow, PLTA run-of-river, produksi energi. Water Usage, Dynamic Programming, Inflow Prediction, Run-of-River Hydropower, Energy Optimization. |
Subjects: | T Technology > T Technology (General) > T57.83 Dynamic programming T Technology > T Technology (General) > T58.8 Productivity. Efficiency |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20101-(S2) Master Thesis |
Depositing User: | Wahyu Prakoso |
Date Deposited: | 28 Jul 2025 08:44 |
Last Modified: | 28 Jul 2025 08:44 |
URI: | http://repository.its.ac.id/id/eprint/121982 |
Actions (login required)
![]() |
View Item |