Klasifikasi Tokoh Protagonis Dan Antagonis Pada Cerita Rakyat Nusantara Menggunakan Struktur Bahasa

Putra, Al-Ferro Yudisthira (2025) Klasifikasi Tokoh Protagonis Dan Antagonis Pada Cerita Rakyat Nusantara Menggunakan Struktur Bahasa. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5025211176-Undergraduate_Thesis.pdf] Text
5025211176-Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Cerita rakyat merupakan bagian dari warisan budaya Indonesia yang tidak hanya berfungsi sebagai hiburan, tetapi juga sebagai media pembelajaran yang menyampaikan nilai moral dan etika. Dalam cerita rakyat, tokoh utama (protagonis) dan tokoh penentang (antagonis) memainkan peran penting dalam membangun alur cerita. Seiring dengan perkembangan teknologi, pengolahan bahasa alami (Natural Language Processing) telah memungkinkan pengembangan model untuk mengidentifikasi tokoh dalam teks menggunakan teknik Named Entity Recognition (NER). Penelitian ini bertujuan untuk mengidentifikasi dan mengklasifikasikan tokoh dalam cerita rakyat berbahasa Indonesia berdasarkan jenisnya, yaitu protagonis, antagonis, dan tokoh lainnya. Kajian terhadap penelitian terdahulu menunjukkan bahwa berbagai pendekatan telah digunakan dalam identifikasi tokoh dalam teks naratif, seperti pemanfaatan model peringkat, analisis fitur linguistik, serta teknik berbasis machine learning. Penelitian ini menerapkan metode yang disesuaikan dengan karakteristik cerita rakyat Indonesia. Penelitian ini menggunakan 222 cerita rakyat Indonesia. Tahapan pertama dimulai dengan membentuk data ground truth melalui metode pseudolabeling. Setelah itu, dilakukan proses klasterisasi untuk mengelompokkan tokoh-tokoh beserta aliasnya, yang kemudian dijadikan acuan dalam penelitian. Langkah selanjutnya adalah mengidentifikasi tokoh berdasarkan ciri-ciri struktur bahasa, lalu menentukan tipe masing-masing tokoh. Seluruh rangkaian proses ini bertujuan menghasilkan sebuah metode yang dapat mengidentifikasi tokoh dan model yang mampu mengklasifikasikan tokoh ke dalam kategori tipenya. Berdasarkan hasil penelitian ini, metode identifikasi tokoh menggunakan struktur bahasa mendapatkan nilai f1-score sebesar 0,513. Metode klasifikasi jenis tokoh dievaluasi menggunakan metrik precision, recall, f1-score, serta accuracy dan mendapatkan nilai sebesar 0,8438, 0,8281, 0,8311, 0,8408 menggunakan model Support Vector Machine (SVM) dengan embedding TF-IDF.
====================================================================================================================================
Folktales are a part of Indonesia’s cultural heritage that serve educational purpose on top of entertainment. As educational pieces, folktales can be a platform for conveying moral and ethical values. Folktale stories are consisted of main characters (protagonist) and opposing characters (antagonist), that each holds crucial roles in developing the storyline. With the advancement of technology, Natural Language Processing has opened the path of identifying characters in folktales using Named Entity Recognition (NER) techniques. This research aims to identify and classify characters in Indonesian folktales based on their roles as protagonist, antagonist, and supporting character. Previous studies show that various methods have been developed for character identification in texts, including ranking models, linguistic feature analysis, machine learning techniques, and coreference-based methods. This study applies a method that is able to identify characters using the characteristic of Indonesian folktales.
This study utilizes 222 Indonesian folktales. The initial stage involves constructing ground truth data using a pseudolabeling method. Following that, a clustering process is carried out to group characters and their aliases, which then serve as the ground truth reference for the research. The next phase focuses on identifying characters based on linguistic structure, followed by determining each character’s type. The outcome of this entire process is a method to identify character and a model capable of automatically classifying characters into their respective types. Based on the results of this study, the character identification method using language structure obtained an f1-score value of 0,513. The character type classification method was evaluated using precision, recall, f1-score, and accuracy metrics and obtained the best values of 0,8438, 0,8281, 0,8311, 0,8408 using the Support Vector Machine (SVM) model with TF-IDF embedding.

Item Type: Thesis (Other)
Uncontrolled Keywords: Named Entity Recognition (NER), klasifikasi , machine learning, deep learning, cerita rakyat Indonesia, Named Entity Recognition (NER), classification, machine learning, deep learning, Indonesian folklore.
Subjects: T Technology > T Technology (General) > T57.8 Nonlinear programming. Support vector machine. Wavelets. Hidden Markov models.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis
Depositing User: Al-Ferro Yudisthira Putra
Date Deposited: 28 Jul 2025 07:03
Last Modified: 28 Jul 2025 07:03
URI: http://repository.its.ac.id/id/eprint/122113

Actions (login required)

View Item View Item