Pengembangan Back-End Website ErgoCheck Menggunakan Clean Architecture

Romadhon, Akmal Ariq (2025) Pengembangan Back-End Website ErgoCheck Menggunakan Clean Architecture. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5025211188-Undergraduate_Thesis.pdf] Text
5025211188-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (4MB) | Request a copy

Abstract

Pekerja kantoran, terutama yang menggunakan komputer, berisiko tinggi mengalami gangguan muskuloskeletal (MSD) akibat postur kerja yang tidak ergonomis. Untuk mengatasi permasalahan tersebut, dikembangkan sebuah aplikasi bernama ErgoCheck yang bertujuan membantu pekerja menilai postur kerja mereka secara mandiri dan memberikan umpan balik kepada supervisor. Aplikasi ini memanfaatkan algoritma machine learning untuk menganalisis foto, video, dan kuesioner yang diunggah oleh pengguna, serta menyediakan saran perbaikan postur kerja. Implementasi backend aplikasi ErgoCheck dilakukan menggunakan pendekatan Clean Architecture yang memisahkan kode program ke dalam tiga lapisan utama: domain, interface, dan infrastructure. Fitur-fitur utama seperti analisis postur, kuis edukasi ergonomi, dan panel monitoring supervisor berhasil diimplementasikan. Sistem ini juga mendukung pembuatan laporan analisis dalam format PDF untuk memudahkan supervisi. Evaluasi sistem dilakukan melalui unit testing, integration testing, API testing, dan load testing. Hasil pengujian menunjukkan bahwa API berfungsi dengan tingkat keberhasilan 100%, serta sistem mampu menangani beban hingga 1000 pengguna dengan throughput tertinggi sebesar 100,5 Kb/s. Dengan adanya ErgoCheck, diharapkan kesadaran terhadap pentingnya postur kerja yang ergonomis meningkat, dan risiko kecelakaan kerja akibat postur yang buruk dapat diminimalisasi. Ke depannya, fitur real-time monitoring dan modul edukasi berbasis referensi ilmiah menjadi pengembangan yang disarankan untuk meningkatkan efektivitas sistem.
========================================================================================================================================
Office workers, especially those who use computers, are at high risk of developing musculoskeletal disorders (MSDs) due to poor ergonomic posture. To address this issue, an application called ErgoCheck was developed to help employees assess their working posture and provide feedback to supervisors. This application utilizes machine learning algorithms to analyze photos, videos, and questionnaires submitted by users, and provides recommendations for posture improvement. The backend implementation of ErgoCheck adopts the Clean Architecture approach, separating the codebase into three main layers: domain, interface, and infrastructure. Key features such as posture analysis, ergonomics education quizzes, and supervisor monitoring dashboards were successfully implemented. The system also supports the generation of posture analysis reports in PDF format to assist supervisors. System performance was evaluated through unit testing, integration testing, API testing, and load testing. The results showed 100% success rate in API testing, and the system was capable of handling up to 1000 users with a peak throughput of 100.5 Kb/s. ErgoCheck is expected to raise awareness of proper ergonomic posture and reduce the risk of work-related injuries. Future improvements may include real-time posture monitoring and learning modules based on scientific references to further enhance the system's effectiveness.

Item Type: Thesis (Other)
Uncontrolled Keywords: Ergonomi, Faktor Risiko Ergonomi, Keamanan Lingkungan Kerja, Musculoskeletal Disorders (MSDs), Pengembangan Backend, Penilaian Postur Kerja, Rekomendasi Kesehatan, Supervisor Monitoring. Backend Development, Ergonomics Musculoskeletal Disorders (MSDs), Ergonomic Risk Factors, Health Recommendations, Posture Assessment, Supervisor Monitoring, Workplace Safety
Subjects: T Technology > T Technology (General)
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis
Depositing User: Akmal Ariq Romadhon
Date Deposited: 28 Jul 2025 06:35
Last Modified: 28 Jul 2025 06:35
URI: http://repository.its.ac.id/id/eprint/122181

Actions (login required)

View Item View Item