Muhammad, Alief Izzul Haq (2025) Penerapan Automated Fluid Interpretation (Autofluid) untuk Identifikasi Hidrokarbon pada Reservoir dengan Variasi Salinitas Studi Kasus Lapangan ALF. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5017211058-undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (11MB) | Request a copy |
Abstract
Log resistivitas berperan penting dalam menentukan jenis fluida reservoir (hidrokarbon atau air formasi), berdasarkan prinsip bahwa air formasi memiliki resistivitas lebih rendah dibandingkan hidrokarbon. Namun, variasi salinitas air formasi dapat mengganggu interpretasi ini karena salinitas yang rendah meningkatkan resistivitas air, sehingga berpotensi menyebabkan bias dalam identifikasi zona water-bearing. Kandungan salinitas air formasi terbukti memengaruhi nilai resistivitas di mana semakin rendah salinitas, semakin tinggi resistivitasnya. Studi ini menganalisis fenomena variasi salinitas di Lapangan ALF, Cekungan Sumatera Selatan, yang memiliki tiga lingkungan pengendapan (fluvial kompleks, transisi, dan laut dangkal). Data salinitas dari beberapa sumur menunjukkan rentang 9000 hingga 19000 ppm dengan tren naik-turun yang terkait dengan lingkungan pengendapan. Untuk mengatasi tantangan interpretasi ini, dikembangkan metode Automated Fluid Interpretation (AutoFluid). AutoFluid menggunakan cutoff resistivitas secara spesifik untuk zona air dan zona hidrokarbon yang dikembangkan berdasarkan data perforasi serta data produksi. Beberapa penyesuaian terkait rumus dan ekspresi modul AutoFluid berhasil dikembangkan dan diaplikasikan ke dalam sumur-sumur pada lapangan ALF. Pengujian pada 5 sumur (44 data perforasi) menghasilkan success rate 93,1%, sementara blind test pada 2 sumur (22 data perforasi) mencapai 90,9%. Hasil ini membuktikan keandalan AutoFluid dalam beradaptasi dengan data baru dan mengidentifikasi fluida reservoir secara akurat, bahkan dalam kondisi variasi salinitas.
================================================================================================================================
Resistivity logs play a crucial role in determining reservoir fluid types (hydrocarbons vs. formation water) based on the principle that formation water typically exhibits lower resistivity due to its conductive properties. However, variations in water salinity can complicate this interpretation, as lower salinity increases water resistivity, potentially leading to misidentification of water-bearing zones. The study confirms that formation water salinity directly affects resistivity values, with an inverse relationship between salinity and resistivity. This research examines salinity variations in the ALF Field, South Sumatra Basin, which features three distinct depositional environments (fluvial complex, transitional, and shallow marine). Formation water salinity data from multiple wells shows a range of 9-19 kppm, with fluctuations correlating to depositional settings. To address these interpretation challenges, we developed an Automated Fluid Interpretation (AutoFluid) method. The AutoFluid method employs specific resistivity cutoffs for water and hydrocarbon zones, developed using perforation and production data. Several adjustments to the module's formulas and expressions were successfully implemented and applied to wells in the ALF Field. Testing across 5 wells (44 perforation datasets) achieved a 93.1% success rate, while blind testing on 2 wells (22 perforation datasets) yielded 90.9% accuracy. These results demonstrate AutoFluid's reliability in adapting to new data and accurately identifying reservoir fluids, even under variable salinity conditions.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | AutoFluid, Lingkungan Pengendapan, Resistivitas, Salinitas, Talang Akar, AutoFluid, Depositional Environment, Resistivity, Salinity, Talang Akar |
Subjects: | Q Science > QE Geology > QE471 Sedimentary rocks. Sedimentology Q Science > QE Geology > QE601 Geology, Structural |
Divisions: | Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Geomatics Engineering > 29202-(S1) Undergraduate Thesis |
Depositing User: | Alief Izzul Haq Muhammad |
Date Deposited: | 28 Jul 2025 07:49 |
Last Modified: | 28 Jul 2025 07:49 |
URI: | http://repository.its.ac.id/id/eprint/122196 |
Actions (login required)
![]() |
View Item |