Purnama, I Putu Adhiya Pratama Mangku (2025) Pengembangan Dashboard Interaktif Untuk Visualisasi Dan Klusterisasi Wilayah Surabaya Berdasarkan Kualitas Pendidikan Dengan K-Medoids Dan Flask. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5026211037-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (11MB) |
Abstract
Kota Surabaya menghadapi disparitas kualitas pendidikan antar wilayah administratif, yang dipengaruhi oleh ketidakmerataan distribusi fasilitas pendidikan dan tenaga pendidik. Kurangnya evaluasi terhadap kondisi pendidikan di setiap wilayah memperburuk situasi, menghambat identifikasi wilayah dengan kualitas pendidikan rendah yang memerlukan perbaikan. Penelitian ini bertujuan untuk mengidentifikasi wilayah yang membutuhkan perhatian lebih dari pemerintah daerah melalui penerapan metode K-Medoids Clustering. Penelitian ini dimulai dengan analisis masalah dan studi literatur, lalu dilanjutkan dengan pengumpulan dan pengolahan data. Proses klasterisasi dilakukan menggunakan algoritma K-Medoids, yang diikuti dengan pembobotan dan pemberian skor menggunakan AHP (Analytic Hierarchy Process). Hasil klasterisasi, serta visualisasi lainnya yang menggambarkan kualitas pendidikan antar wilayah, kemudian disajikan dalam dashboard interaktif berbasis Python Flask dan Folium yang menerapkan metode User Centered Design (UCD). Berdasarkan hasil validasi klaster, Skenario 1 dipilih untuk jenjang SMA dan Skenario 2 untuk jenjang SMK sebagai skenario terbaik. Pada Skenario 1 untuk SMA, klasterisasi menghasilkan empat klaster dengan kualitas pendidikan kategori tinggi, dua klaster kategori sedang, dan dua klaster kategori rendah. Sementara itu, pada Skenario 2 untuk SMK, klasterisasi menghasilkan satu klaster kategori tinggi, tiga klaster kategori sedang, dan satu klaster kategori rendah. Pembobotan indikator kualitas pendidikan menggunakan AHP menghasilkan nilai Consistency Ratio (CR) sebesar 0.022, yang menunjukkan konsistensi yang baik dalam proses penilaian. Hasil pengujian usabilitas dashboard menunjukkan nilai rerata SEQ sebesar 6.08, yang menandakan bahwa dashboard ini interaktif dan mudah digunakan oleh penggunanya. Penelitian ini menunjukkan bahwa metode K-Medoids Clustering berhasil memetakan disparitas kualitas pendidikan antar wilayah, dan dashboard Educluster memudahkan stakeholder dalam pengambilan keputusan untuk meningkatkan pemerataan kualitas pendidikan di Kota Surabaya.
=======================================================================================================================================
Surabaya faces disparities in the quality of education across administrative regions, which is influenced by the uneven distribution of educational facilities and teaching staff. The lack of evaluation of the educational conditions in each region exacerbates the situation by hindering the identification of areas with low educational quality that require improvement. This research aims to identify regions that need more attention from the local government concerning educational quality through the application of the K-Medoids Clustering method. The research begins with problem analysis and literature review, followed by data collection and processing. The clustering process is performed using the K-Medoids algorithm, followed by weighting and scoring using the Analytic Hierarchy Process (AHP). The results of the clustering, along with other visualizations that illustrate the quality of education across regions, are then presented in an interactive dashboard built with Python Flask and Folium, applying the User-Centered Design (UCD) method. Based on the clustering validation results, Scenario 1 was chosen for SMA (Senior High School) and Scenario 2 for SMK (Vocational High School) as the best scenarios. In Scenario 1 for SMA, clustering resulted in four clusters with high educational quality, two clusters with medium quality, and two clusters with low quality. Meanwhile, in Scenario 2 for SMK, clustering resulted in one cluster with high educational quality, three clusters with medium quality, and one cluster with low quality. The weighting of the educational quality indicators using AHP produced a Consistency Ratio (CR) of 0.022, indicating good consistency in the evaluation process. The usability testing of the dashboard showed an average SEQ score of 6.08, indicating that the dashboard is interactive and easy to use. This research demonstrates that the K-Medoids Clustering method successfully mapped the disparities in educational quality across regions, and the Educluster dashboard facilitates decision-making for stakeholders to improve the equitable distribution of educational quality in Surabaya.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Education, Clustering, K-Medoids, AHP, Interactive Dashboard, Flask, Pendidikan, Klasterisasi, K-Medoids, AHP, Dashboard Interaktif, Flask |
Subjects: | H Social Sciences > HD Industries. Land use. Labor > HD30.23 Decision making. Business requirements analysis. L Education > L Education (General) Q Science > QA Mathematics > QA278.55 Cluster analysis T Technology > T Technology (General) T Technology > T Technology (General) > T385 Visualization--Technique T Technology > T Technology (General) > T57.5 Data Processing |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis |
Depositing User: | I Putu Adhitya Pratama Mangku Purnama |
Date Deposited: | 26 Jul 2025 08:05 |
Last Modified: | 26 Jul 2025 08:05 |
URI: | http://repository.its.ac.id/id/eprint/122215 |
Actions (login required)
![]() |
View Item |