Najib, Muhamad Nico Syahrul (2025) Perancangan Sistem Powertrain Pada Kendaraan Hibrida Seri Menggunakan Genetic Algorithm. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5007211086-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Tantangan adopsi kendaraan listrik di Indonesia, seperti infrastruktur pengisian daya yang belum merata dan tingginya biaya baterai, mendorong pengembangan solusi alternatif yang efisien. Kendaraan hibrida seri (series hybrid) menawarkan solusi yang menjanjikan untuk mengatasi keterbatasan. Penelitian ini bertujuan untuk menentukan ukuran (sizing) optimal dari komponen sistem Powertrain yang terdiri dari mesin (ICE) sebagai generator dan baterai pack, dengan fungsi tujuan utama untuk menemukan biaya paling minimum gabungan dari biaya kapital (CC) dan biaya operasional (CO).Metodologi penelitian ini menggunakan Genetik Algoritma (GA) yang diimplementasikan dalam MATLAB untuk melakukan optimisasi multi-variabel. Sebuah model simulasi dinamika kendaraan dikembangkan terlebih dahulu di Simulink untuk mengevaluasi kebutuhan daya dan torsi berdasarkan siklus kemudi standar US06 yang agresif. Fungsi tujuan (objective function) dirancang secara komprehensif untuk meminimalkan biaya total dengan menormalisasi dan membobotkan CC dan CO, serta menerapkan fungsi penalti untuk menangani berbagai batasan teknis, termasuk daya total minimum, batas biaya, tegangan, arus, dan kapasitas energi minimum. Penelitian ini mengusulkan optimasi ukuran komponen Powertrain terdiri dari mesin pembakaran internal (ICE) sebagai generator dan baterai pack menggunakan Genetik Algoritma (GA) untuk meminimalkan total biaya, yang mencakup biaya kapital (CC) dan biaya operasional (CO). Hasil menunjukkan bahwa konfigurasi optimal 115s2p dan mesin 86 kW, generator 33.53 kW menghasilkan total cost capital lebih hemat 24% dibanding sistem baterai-saja dan 7% cost operational lebih hemat dibanding sistem mesin+generator. Penelitian ini membuktikan efektivitas GA dalam menentukan desain sistem penggerak (powertrain) yang ekonomis dan efisien secara biaya.
======================================================================================================================================
Challenges in the adoption of electric vehicles in Indonesia such as uneven charging infrastructure and the high cost of batteries have driven the development of efficient alternative solutions. Series hybrid vehicles offer a promising approach to overcoming these limitations. This study aims to determine the optimal sizing of Powertrain components, consisting of an internal combustion engine (ICE) acting as a generator and a battery pack, with the primary objective of minimizing the total cost, combining capital cost (CC) and operational cost (CO). The research methodology utilizes a Genetic Algorithm (GA) implemented in MATLAB to perform multi-variable optimization. A dynamic vehicle simulation model was first developed in Simulink to evaluate power and torque requirements based on the aggressive US06 driving cycle. The objective function was comprehensively designed to minimize the total cost by normalizing and weighting CC and CO, while also applying a penalty function to address various technical constraints, including minimum total power, cost limits, voltage, current, and minimum energy capacity. This study proposes Powertrain component sizing optimization for series hybrid vehicles using GA to minimize total cost. The optimal configuration 115s2p battery pack and an 86 kW engine also generator 33.53 kW results in the lowest total cost capital 24% lower than a battery-only system and cost operational 7% lower than an engine+generator system. The findings demonstrate the effectiveness of GA in designing a cost-efficient and economically optimized hybrid Powertrain system.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Baterai, Genetik Algoritma, Kendaraan Hibrida Seri, Sistem Powertrain Hibrida Seri, Battery, Genetic Algorithm, Hybrid Series Vehicle, Hybrid Series Powertrain System. |
Subjects: | Q Science > QA Mathematics > QA402.5 Genetic algorithms. Interior-point methods. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL221.5 Hybrid Vehicles. Hybrid cars T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL262 Automobiles--Transmission devices--Design and construction. |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering |
Depositing User: | Muhamad Nico Syahrul Najib |
Date Deposited: | 29 Jul 2025 02:36 |
Last Modified: | 29 Jul 2025 02:36 |
URI: | http://repository.its.ac.id/id/eprint/122422 |
Actions (login required)
![]() |
View Item |