Iswati, Berlianna (2025) Prediksi Ketinggian Dan Debit Aliran Sungai Dengan Metode Ensemble Kalman Filter. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5002211080-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Jakarta merupakan wilayah perkotaan yang rentan terhadap banjir, terutama akibat meluapnya sungai-sungai utama seperti Ciliwung, Pesanggrahan, dan Angke. Permasalahan ini membutuhkan adanya sistem prediksi aliran sungai untuk mendukung mitigasi banjir. Pada Tugas Akhir ini metode Ensemble Kalman Filter (EnKF) diimplementasikan pada model Saint-Venant untuk melakukan estimasi parameter yaitu kekasaran Manning (n), lebar dasar saluran (b), dan kemiringan sisi saluran (m). Hasil estimasi parameter akan divalidasi terhadap model dan dievaluasi dengan Root Mean Square Error (RMSE). Selain itu, EnKF juga digunakan untuk mengestimasi variabel tinggi permukaan air (H) dan debit (Q), serta melakukan prediksi ke depan terhadap kedua variabel tersebut yang akan dievaluasi juga dengan Root Mean Square Error (RMSE). Diskritisasi model dilakukan menggunakan metode beda hingga, dengan input curah hujan harian di sisi hulu sungai. Hasil simulasi menunjukkan bahwa EnKF mampu menghasilkan estimasi variabel tinggi permukaan air dan debit dengan akurasi yang baik di titik observasi. Nilai Root Mean Square Error (RMSE) tinggi permukaan air dan debit berturut-turut untuk Sungai Ciliwung sebesar 0.00036 dan 0.05358, Sungai Pesanggrahan sebesar 0.00039 dan 0.04984, serta Sungai Angke sebesar 0.00050 dan 0.07328. Secara keseluruhan, implementasi EnKF dengan model Saint-Venant mampu merepresentasikan pola aliran sungai dengan cukup baik. Hasil simulasi menunjukkan potensi untuk mendukung sistem prediksi dan peringatan dini banjir di wilayah perkotaan yang rawan terdampak.
==================================================================================================================================
Jakarta is an urban area that is prone to flooding, especially due to the overflow of major rivers such as Ciliwung, Pesanggrahan, and Angke. This problem requires a river flow prediction system to support flood mitigation. In this paper, the Ensemble Kalman Filter (EnKF) method is implemented on the Saint-Venant model to estimate the parameters of Manning’s roughness (n), channel bottom width (b), and channel side slope (m). The parameter estimation results will be validated against the model and evaluated with the Root Mean Square Error (RMSE). In addition, EnKF is also used to estimate the variables of water surface height (H) and discharge (Q), and make future predictions of both variables which will also be evaluated by Root Mean Square Error (RMSE). The discretization of the model is done using the finite difference method, with daily rainfall input on the upstream side of the river. The simulation results show that EnKF is able to produce variable estimates of water surface height and discharge with good accuracy at the observation point. The Root Mean Square Error (RMSE) of water level and discharge for Ciliwung River is 0.00036 and 0.05358, Pesanggrahan River is 0.00039 and 0.04984, and Angke River is 0.00050 and 0.07328, respectively. Overall, the implementation of EnKF with the Saint-Venant model is able to represent river flow patterns quite well. The simulation results show the potential to support flood prediction and early warning systems in urban areas that are prone to being affected.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Banjir, Saint-Venant, Ensemble Kalman Filter, Prediksi Aliran Sungai, Flooding, Saint-Venant, Ensemble Kalman Filter, River Flow Prediction. |
Subjects: | Q Science Q Science > QA Mathematics Q Science > QA Mathematics > QA402.3 Kalman filtering. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Berlianna Iswati |
Date Deposited: | 29 Jul 2025 08:09 |
Last Modified: | 29 Jul 2025 08:09 |
URI: | http://repository.its.ac.id/id/eprint/122839 |
Actions (login required)
![]() |
View Item |