Analisis Pengaruh Damping Coefficient dan Penambahan All Wheel Torque Vectoring Pada Laptime dan Performa Cornering Mobil Anargya Mark 3.0 Dalam Skidpad Event Formula Student

Tantiono, Valerian Giovanni (2025) Analisis Pengaruh Damping Coefficient dan Penambahan All Wheel Torque Vectoring Pada Laptime dan Performa Cornering Mobil Anargya Mark 3.0 Dalam Skidpad Event Formula Student. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007211122-Undergraduate_Thesis.pdf] Text
5007211122-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (5MB) | Request a copy

Abstract

Performa mobil Formula Student dalam Skidpad Event menjadi salah satu indikator penting dalam menilai kemampuan manuver dan pengendalian kendaraan. Pada skidpad event, setiap tim menghadapi dengan lintasan berbentuk angka delapan yang membutuhkan stabilitas dan responsivitas tinggi. Salah satu tantangan utama dalam Skidpad Event adalah menjaga handling dan traksi optimal saat menikung pada lintasan. Tim Anargya ITS mengembangkan mobil Anargya Mark 3.0 yang berkompetisi pada kategori electric vehicle.

Penelitian ini bertujuan untuk memodelkan mobil Anargya Mark 3.0 dengan dan tanpa torque vectoring serta mengetahui performa cornering yang dihasilkan. Permodelan mobil dilakukan menggunakan Simscape Multibody yang memungkinkan untuk melakukan simulasi realistis terhadap dinamika kendaraan. Driver model algorithm digunakan untuk memodelkan pengemudi, sedangkan sistem torque vectoring diterapkan untuk mendistribusikan torsi secara dinamis ke setiap roda sesuai dengan kondisi kendaraan. Selain itu, penelitian ini juga bertujuan untuk mengetahui dan mengoptimasi pengaruh damping coefficient pada sistem suspensi serta implementasi all wheel torque vectoring terhadap performa model kendaraan Anargya Mark 3.0. Dalam hal ini, nilai damping coefficient depan dan belakang divariasikan untuk menentukan konfigurasi optimal yang memberikan waktu laptime terbaik. Back propagation neural network digunakan untuk melakukan train data sebelum melakukan optimasi menggunakan genetic algorithm.

Hasil penelitian menunjukkan bahwa penerapan TVC secara signifikan meningkatkan performa kendaraan di semua aspek yang diuji. TVC terbukti meningkatkan percepatan lateral rata-rata sebesar 0,107 G, menaikkan kecepatan rata-rata hingga 16,78%, serta mengurangi sudut kemudi rata-rata sebesar 3,19 derajat dan mengurangi 0,0481 derajat rata-rata body roll / G. Damping coefficient juga menunjukkan pengaruh krusial karena terdapat konfigurasi yang terbaik untuk mencapai performa cornering dan laptime optimal . nilai coefficient yang terlalu tinggi, terlalu rendah, atau memiliki perbedaan signifikan antara coefficient depan dan belakang akan menurunkan performa cornering dan menaikkan laptime. Optimasi menggunakan GA berhasil mengidentifikasi kombinasi damping optimal yang menghasilkan laptime simulasi tercepat sebesar 6,431 s dengan TVC serta jauh konfigurasi damping optimal tanpa TVC menghasilkan laptime 6,957 s.

=====================================================================================================================================

The performance of Formula Student cars in the Skidpad Event is a key indicator for evaluating maneuverability and vehicle control. In the Skidpad Event, each team faces a figure-eight track that requires high stability and responsiveness. One of the main challenges in the Skidpad Event is maintaining optimal handling and traction while cornering on the track. The Anargya ITS team developed the Anargya Mark 3.0, which competes in the electric vehicle category.

This research aims to model the Anargya Mark 3.0 car with and without torque vectoring and assess its cornering performance. The vehicle modeling is carried out using Simscape Multibody, which allows for realistic simulations of vehicle dynamics. A driver model algorithm is used to simulate the driver, while the torque vectoring system is applied to dynamically distribute torque to each wheel based on the vehicle’s condition. Additionally, this study aims to analyze and optimize the effect of damping coefficient on the suspension system and the implementation of all-wheel torque vectoring on the performance of the Anargya Mark 3.0 vehicle model. In this case, the front and rear damping coefficients are varied to determine the optimal configuration that provides the best laptime. A backpropagation neural network is used to train the data before optimization with a genetic algorithm.

The results of the study indicate that the application of TVC significantly improves vehicle performance in all tested aspects. TVC was found to increase the average lateral acceleration by 0.107 G, raise the average speed by 16.78%, reduce the average steering angle by 3.19 degrees, and decrease the average body roll by 0.0481 degrees per G. The damping coefficient also shows a crucial effect, as there is an optimal configuration to achieve the best cornering performance and optimal laptime. Coefficients that are too high, too low, or have a significant difference between the front and rear will degrade cornering performance and increase laptime. Optimization using GA successfully identified the optimal damping combination that produced the fastest simulation laptime of 6.431 s with TVC, compared to the configuration without TVC, which resulted in a laptime of 6.957 s.

Item Type: Thesis (Other)
Uncontrolled Keywords: FSAE car model, torque vectoring, damping coefficient, skidpad event
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > T Technology (General) > T57.8 Nonlinear programming. Support vector machine. Wavelets. Hidden Markov models.
T Technology > T Technology (General) > T57.84 Heuristic algorithms.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL152.8 Vehicles, Remotely piloted. Autonomous vehicles.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL220 Electric vehicles and their batteries, etc.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL257 Springs and suspension
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL257.5 Automobiles--Shock absorbers--Design and construction.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL521.3 Automatic Control
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Valerian Giovanni Tantiono
Date Deposited: 02 Aug 2025 15:22
Last Modified: 02 Aug 2025 15:22
URI: http://repository.its.ac.id/id/eprint/123905

Actions (login required)

View Item View Item