Studi Numerik Tiga Dimensi Pengaruh Penambahan Blended Winglet Pada Sayap Naca 4412 Terhadap Kinerja Aerodinamika Dengan Variasi Cant Angle 15°, 30°, Dan 45°

Fadhlurrahman, Dimas (2025) Studi Numerik Tiga Dimensi Pengaruh Penambahan Blended Winglet Pada Sayap Naca 4412 Terhadap Kinerja Aerodinamika Dengan Variasi Cant Angle 15°, 30°, Dan 45°. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007211165-Undergraduate_Thesis.pdf] Text
5007211165-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Dalam dunia penerbangan modern, efisiensi aerodinamis merupakan faktor krusial yang sangat memengaruhi performa pesawat. Salah satu penyebab utama menurunnya efisiensi tersebut adalah munculnya induced drag akibat pembentukan wingtip vortices di ujung sayap. Untuk mengatasi permasalahan ini, berbagai pengembangan perangkat wingtip seperti winglet telah dilakukan. Salah satu desain yang terbukti efektif adalah blended winglet, yang dikenal mampu mengurangi induced drag secara signifikan.
Penelitian ini bertujuan untuk menganalisis karakteristik aliran tiga dimensi pada sayap dengan profil airfoil NACA 4412 yang dilengkapi blended winglet, dengan variasi sudut cant angle sebesar 15°, 30°, dan 45°. Fokus utama penelitian adalah mengevaluasi pengaruh variasi cant angle terhadap performa aerodinamis sayap, khususnya gaya angkat (lift), gaya hambat (drag), dan rasio lift-to-drag (L/D ratio). Metode yang digunakan berupa simulasi numerik berbasis Computational Fluid Dynamics (CFD) menggunakan perangkat lunak ANSYS Fluent 2021 R2. Model geometri dibuat dengan SolidWorks dan Fusion 360, meshing dilakukan dengan ICEM CFD, dan simulasi dijalankan dalam kondisi aliran steady, viscous, uniform, dan incompressible, serta menggunakan model turbulensi SST k-ω.
Penelitian ini diharapkan dapat memberikan gambaran mengenai dampak penambahan blended winglet dengan variasi cant angle terhadap distribusi aliran, pembentukan tip vortex, dan efisiensi aerodinamis. Hasil dari studi ini diharapkan mampu memberikan kontribusi dalam optimalisasi desain sayap pesawat, khususnya dalam meningkatkan performa aerodinamis dan efisiensi bahan bakar melalui pengurangan induced drag.
Hasil simulasi menunjukkan bahwa penambahan winglet dengan variasi cant angle memberikan pengaruh signifikan terhadap karakteristik aliran. Distribusi tekanan dan kecepatan menunjukkan adanya peningkatan tekanan pada lower surface dan perluasan tekanan rendah pada upper surface, terutama di dekat ujung sayap. Hal ini menyebabkan peningkatan gaya angkat pada semua variasi cant angle, dengan nilai tertinggi pada 45°. Namun, nilai gaya drag juga meningkat seiring bertambahnya cant angle, di mana konfigurasi 15° justru menghasilkan drag terendah. Efisiensi aerodinamis (CL/CD) tertinggi dicapai pada cant angle 15° dengan peningkatan sebesar 56,61% dibandingkan tanpa winglet. Analisis kontur tekanan, kontur kecepatan, streamline, dan vektor kecepatan menunjukkan bahwa penambahan winglet mampu menggeser lokasi tip vortex ke ujung winglet serta memperlemah kekuatannya, sehingga mengurangi gangguan terhadap aliran pada span sayap.
Kesimpulan yang dapat diambil dari studi ini adalah penambahan blended winglet dengan cant angle berpengaruh positif terhadap performa aerodinamis sayap NACA 4412. Konfigurasi cant angle 15° terbukti sebagai desain paling optimal karena menghasilkan keseimbangan terbaik antara peningkatan gaya lift dan pengurangan drag, serta efisiensi aerodinamis tertinggi. Penambahan winglet juga terbukti mampu memodifikasi karakteristik aliran, terutama dengan memindahkan dan melemahkan tip vortex. Untuk penelitian lanjutan, disarankan untuk meningkatkan kualitas mesh dan mengevaluasi pengaruh sudut serang (angle of attack) terhadap berbagai konfigurasi winglet guna memperoleh desain yang lebih optimal.
====================================================================================================================================
In modern aviation, aerodynamic efficiency is a crucial factor that significantly affects aircraft performance and fuel consumption. One of the main causes of reduced efficiency is the occurrence of induced drag resulting from the formation of wingtip vortices. To address this issue, various wingtip devices such as winglets have been developed. One effective design is the blended winglet, which is known to significantly reduce induced drag.
This study aims to analyze the three-dimensional flow characteristics on a wing using the NACA 4412 airfoil profile equipped with a blended winglet, with variations in cant angle of 15°, 30°, and 45°. The main focus of the study is to evaluate the influence of cant angle variations on the aerodynamic performance of the wing, particularly in terms of lift, drag, and the lift-to-drag ratio (L/D ratio). The method used is numerical simulation based on Computational Fluid Dynamics (CFD) using ANSYS Fluent 2021 R2. The geometry modeling is done using SolidWorks and Fusion 360, meshing is performed using ICEM CFD, and the simulations are run under steady, viscous, uniform, and incompressible flow conditions using the SST k-ω turbulence model.
This research is expected to provide insight into the effects of implementing a blended winglet with varying cant angles on flow distribution, tip vortex formation, and aerodynamic efficiency. The results are intended to contribute to the optimization of aircraft wing design, especially in enhancing aerodynamic performance and fuel efficiency through the reduction of induced drag.
The simulation results show that the addition of a blended winglet with varying cant angles significantly affects the aerodynamic flow characteristics. The pressure and velocity distribution indicate an increase in pressure on the lower surface and an expanded low-pressure region on the upper surface, especially near the wingtip. This leads to an increase in lift force across all cant angle variations, with the highest lift observed at a 45° configuration. However, drag also increases with greater cant angles, where the 15° configuration yields the lowest drag. The highest aerodynamic efficiency (CL/CD) is achieved at the 15° cant angle, with an improvement of 56.61% compared to the baseline (no winglet). Flow visualization through pressure contours, velocity contours, streamlines, and velocity vectors that the addition of the winglet shifts the tip vortex location to the winglet tip and weakens its strength, thus reducing its interference with the main span airflow.
This study concludes that implementing a blended winglet with a cant angle positively enhances the aerodynamic performance of the NACA 4412 wing. Among the variations, the 15° cant angle configuration proves to be the most optimal design, offering the best trade-off between lift enhancement and drag reduction, along with the highest aerodynamic efficiency. The winglet is also effective in altering flow characteristics by relocating and attenuating tip vortex formation. For future research, it is recommended to refine mesh quality and examine the effects of angle of attack variations to achieve a more comprehensive optimization of winglet configurations.

Item Type: Thesis (Other)
Uncontrolled Keywords: Airfoil NACA 4412, blended winglet, cant angle, CFD, Airfoil NACA 4412, blended winglet, cant angle, CFD.
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL521 Aerodynamics, Hypersonic.
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Dimas Fadhlurrahman
Date Deposited: 01 Aug 2025 06:18
Last Modified: 01 Aug 2025 06:18
URI: http://repository.its.ac.id/id/eprint/124371

Actions (login required)

View Item View Item