Rasendriya, Zada Alfarras (2025) Analisis Sentimen Pada Ulasan Google Play Store Untuk Aplikasi Bank Digital Di Indonesia Menggunakan Indobert. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5026211088-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (7MB) | Request a copy |
Abstract
Penelitian ini bertujuan untuk melakukan analisis sentimen pada ulasan aplikasi bank digital di Indonesia. Dalam era digital yang semakin berkembang, bank-bank digital menjadi salah satu pilihan utama masyarakat dalam melakukan transaksi perbankan. Ulasan pengguna memberikan informasi berharga mengenai pengalaman pengguna yang dapat digunakan untuk meningkatkan kualitas layanan. Penelitian ini menggunakan metode analisis sentimen berbasis aspek dengan model IndoBERT, sebuah model bahasa pre-trained untuk Bahasa Indonesia, untuk mengidentifikasi sentimen pada aspek-aspek seperti kemudahan penggunaan, fitur, keamanan, dan layanan pelanggan.
Data yang digunakan diperoleh dari Google Play Review terhadap lima aplikasi bank digital terkemuka di Indonesia, yaitu SeaBank, Bank Jago, NeoBank, BCA Digital, dan AlloBank. Dari proses web scraping, dikumpulkan sekitar 112.532 ulasan yang kemudian melalui tahap data cleaning dan anotasi menggunakan Label Studio. Hasil akhir dari proses ini menghasilkan 1.919 data berlabel yang digunakan dalam pelatihan model. Penelitian ini menguji tiga model IndoBERT, yaitu IndoBERT-base-p1, IndoBERT-base-p2, dan IndoBERT-large-p2, dengan pembagian data sebesar 80% untuk pelatihan, 10% untuk validasi silang, dan 10% untuk pengujian.
Hasil pelatihan menunjukkan bahwa IndoBERT-base-p1 memiliki performa terbaik saat training dengan akurasi sebesar 94,7% dan F1-macro sebesar 0,8612. Namun, saat diuji pada data uji, model IndoBERT-large-p2 menunjukkan generalisasi yang lebih baik dengan akurasi 92% dan F1-macro sebesar 0,85. Hal ini mengindikasikan bahwa model base-p1 mengalami overfitting terhadap data latih. Selain itu, analisis lanjutan pada ulasan lima bank digital menunjukkan bahwa sentimen pengguna cenderung terbagi pada kategori positif dan negatif, sedangkan sentimen netral jumlahnya relatif kecil. Temuan ini mengindikasikan bahwa pengguna cenderung menyampaikan opini secara eksplisit. Hasil akhir dari penelitian ini diharapkan dapat memberikan wawasan bagi pengembang aplikasi bank digital dalam mengevaluasi dan meningkatkan layanan berdasarkan umpan balik nyata dari pengguna.
========================================================================================================================
This study aims to conduct aspect-based sentiment analysis on user reviews of digital banking applications in Indonesia. In today's increasingly digital era, digital banks have become one of the main choices for the public in conducting banking transactions. User reviews provide valuable insights into user experiences that can be utilized to improve service quality. This research applies aspect-based sentiment analysis using IndoBERT, a pre-trained language model for the Indonesian language, to identify sentiment toward various aspects such as ease of use, features, security, and customer service.
The data used in this study were obtained from Google Play reviews of five leading digital banking applications in Indonesia: SeaBank, Bank Jago, NeoBank, BCA Digital, and AlloBank. Through a web scraping process, around 112,532 reviews were collected, which then underwent data cleaning and annotation using Label Studio. The final result of this process yielded 1,919 labeled data points that were used to train the model. This research tested three IndoBERT models: IndoBERT-base-p1, IndoBERT-base-p2, and IndoBERT-large-p2, with a data split of 80% for training, 10% for validation, and 10% for testing.
The training results showed that IndoBERT-base-p1 performed best during the training phase, achieving an accuracy of 94.7% and an F1-macro score of 0.8612. However, when evaluated on the test data, the IndoBERT-large-p2 model demonstrated better generalization, with an accuracy of 92% and an F1-macro score of 0.85. This indicates that the base-p1 model experienced overfitting on the training data. Furthermore, additional analysis of reviews from the five digital banks revealed that user sentiment tended to fall into either positive or negative categories, with neutral sentiment appearing only in a small portion of the data. This suggests that users tend to express their opinions explicitly. The findings of this study are expected to provide insights for digital banking application developers in evaluating and enhancing their services based on real user feedback.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Sentiment Analysis, IndoBERT, digital bank, Analisis Sentimen, IndoBERT, Bank Digital, |
Subjects: | Q Science > QA Mathematics > QA336 Artificial Intelligence |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis |
Depositing User: | Zada Alfarras Rasendriya |
Date Deposited: | 30 Jul 2025 08:17 |
Last Modified: | 30 Jul 2025 08:17 |
URI: | http://repository.its.ac.id/id/eprint/124383 |
Actions (login required)
![]() |
View Item |