Analisis Pengaruh Variasi Rasio Batubara Dan Biomassa Sawdust Pada Metode Direct Dan Parallel Co-Firing Terhadap Performa Pltu 350 MW Menggunakan Simulasi Cycle Tempo 5.0

Charissa, Gita (2025) Analisis Pengaruh Variasi Rasio Batubara Dan Biomassa Sawdust Pada Metode Direct Dan Parallel Co-Firing Terhadap Performa Pltu 350 MW Menggunakan Simulasi Cycle Tempo 5.0. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007211035-Undergraduate_Thesis.pdf] Text
5007211035-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Menipisnya ketersediaan batubara mendorong perlunya pemanfaatan bahan bakar alternatif seperti biomassa. Parallel co-firing merupakan salah satu metode implementasi pada PLTU untuk memanfaatkan bahan bakar alternatif tersebut. Metode ini menggunakan dua bahan bakar berbeda yaitu batubara dan biomassa yang dibakar dalam unit terpisah kemudian gas hasil pembakarannya dialirkan menuju boiler utama. Penelitian ini bertujuan untuk menganalisis pengaruh variasi rasio batubara dan biomassa sawdust terhadap performa PLTU kapasitas 350 MW menggunakan metode direct dan parallel co-firing. Simulasi dilakukan menggunakan Cycle Tempo 5.0 pada dua kondisi pembebanan (100% dan 50%) dan lima variasi rasio bahan bakar (95% : 5%), (90% : 10%), (85% : 15%), (80% : 20%), dan (75% : 25%). Hasil simulasi menunjukkan bahwa peningkatan rasio biomassa menyebabkan kenaikan konsumsi bahan bakar, kebutuhan udara pembakaran, dan auxiliary power. Pada skema direct, konsumsi bahan bakar meningkat dari 59,59 kg/s menjadi 66,35 kg/s, sedangkan pada parallel dari 61,64 kg/s menjadi 69,84 kg/s. Kebutuhan udara pembakaran juga meningkat dari 424,75 kg/s menjadi 445,36 kg/s (direct) dan dari 441,83 kg/s menjadi 463,97 kg/s (parallel). Kenaikan konsumsi bahan bakar dan udara ini turut menyebabkan meningkatnya konsumsi auxiliary power, naik dari 16,24 MW menjadi 17,72 MW (direct) dan dari 16,84 MW menjadi 18,46 MW (parallel). Peningkatan auxiliary power dan kebutuhan udara pembakaran berkontribusi terhadap kenaikan nilai NPHR dari 2392,34 kkal/kWh menjadi 2402,18 kkal/kWh (direct) dan dari 2423,8 menjadi 2435,03 kkal/kWh (parallel), yang menyebabkan penurunan efisiensi termal dari 35,96% menjadi 35,82% (direct) dan dari 35,5% menjadi 35,33% (parallel). Efisiensi pada metode parallel co-firing lebih rendah karena pembakaran terpisah membutuhkan peralatan tambahan dan meningkatkan beban auxiliary. Namun, metode parallel memiliki keunggulan teknis dalam jangka panjang karena dapat mengurangi risiko korosi, fouling, dan slagging akibat karakteristik biomassa. Tren serupa juga terjadi pada beban 50%, meskipun dengan nilai absolut yang lebih rendah.
======================================================================================================================================
The depletion of coal reserves has driven the need to utilize alternative fuels such as biomass. Parallel co-firing is one of the implementation methods in Coal-Fired Power Plants to utilize this alternative fuel. This method involves burning two different fuels, coal and biomass, in separate units where the resulting combustion gases are directed into the main boiler. This study aims to analyze the effect of varying coal and sawdust biomass ratios on the performance of a 350 MW coal-fired power plant using both direct and parallel co-firing methods. Simulations were conducted using Cycle Tempo 5.0 under two load conditions (100% and 50%) and five variations of fuel ratios (95%:5%), (90%:10%), (85%:15%), (80%:20%), and (75%:25%). The simulation results show that increasing the biomass ratio leads to higher fuel consumption, combustion air requirements, and auxiliary power. In the direct scheme, fuel consumption increased from 59.59 kg/s to 66.35 kg/s, while in the parallel scheme, it rose from 61.64 kg/s to 69.84 kg/s. The combustion air requirements also increased from 424.75 kg/s to 445.36 kg/s (direct) and from 441.83 kg/s to 463.97 kg/s (parallel). These increases contributed to rising auxiliary power consumption, from 16.24 MW to 17.72 MW (direct) and from 16.84 MWto 18.46 MW (parallel). The higher auxiliary power and air requirements caused Net Plant Heat Rate (NPHR) to increase from 2392.34 kcal/kWh to 2402.18 kcal/kWh (direct) and from 2423.8 to 2435.03 kcal/kWh (parallel), resulting in a decline in thermal efficiency from 35.96% to 35.82% (direct) and from 35.5% to 35.33% (parallel). The efficiency in the parallel co-firing method is lower because separate combustion requires additional equipment and increases auxiliary load. However, the parallel method has long term technical advantages by reducing the risk of corrosion, fouling, and slagging due to the characteristics of biomass. Similar trends were observed at 50% load, though with lower absolute values.

Item Type: Thesis (Other)
Uncontrolled Keywords: Auxiliary, Biomassa, Co-firing, Cycle Tempo, Efisiensi, NPHR, Auxiliary, Biomass, Co-firing, Cycle Tempo, Efficiency, NPHR
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ263.5 Boilers (general)
T Technology > TJ Mechanical engineering and machinery > TJ265.E23 Thermodynamics.
T Technology > TJ Mechanical engineering and machinery > TJ266 Turbines. Turbomachines (General)
T Technology > TJ Mechanical engineering and machinery > TJ808 Renewable energy sources. Energy harvesting.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Gita Charissa
Date Deposited: 01 Aug 2025 01:47
Last Modified: 01 Aug 2025 01:47
URI: http://repository.its.ac.id/id/eprint/124451

Actions (login required)

View Item View Item