Hendy, Hendy (2025) Penentuan Dimensi Metrik dan Variasi Himpunan Pembeda dengan Algoritma Metaheuristik. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
7002211006-Dissertation.pdf Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Penelitian mengenai dimensi metrik terus berkembang, baik dari segi pengembangan konsep maupun analisis. Aplikasinya dalam berbagai area yaitu pada bidang bioinformatika, telekomunikasi, dan navigasi robot, menjadikan permasalahan ini penting untuk diteliti. Sebagian besar penelitian terdahulu berfokus pada pencarian dimensi metrik pada kelas graf tertentu. Penentuan dimensi metrik pada graf dengan sebarang tipe dan ukuran memerlukan teknik atau metode komputasi yang handal. Oleh karena itu, penentuan dimensi metrik dan variasi himpunan pembeda pada sebarang graf menjadi tantangan yang sangat menarik, baik dari segi metode dan komputasinya. Algoritma metaheuristik adalah pendekatan komputasi untuk mencari solusi optimal atau mendekati optimal dari suatu permasalahan optimasi dengan cara mencoba secara iteratif untuk memperbaiki kandidat solusi dengan memperhatikan batasan kualitas solusi yang diinginkan. Pada penelitian ini dikembangkan suatu metode berbasis metaheuristik untuk menentukan dimensi metrik dan variasi himpunan pembeda dari kelas graf tertentu maupun graf secara umum. Metode yang dikembangkan berbasis algoritma ant colony optimization (ACO) dan binary-gray wolf optimizer (B-GWO). Metode ini telah diuji pada beberapa kelas graf antara lain: graf lengkap, graf bipartit lengkap, graf lingkaran, graf generalized antiprisma, graf roda, graf Jahangir, graf friendship, dan graf lintasan. Hasil penelitian menunjukkan bahwa algoritma metaheuristik mampu memecahkan masalah dimensi metrik, detour metrik, dimensi-bi metrik, dan dimensi metrik campuran dengan waktu penyelesaian yang efisien dan hasil yang kompetitif.
====================================================================================================================================
Research on metric dimensions continues to evolve in terms of both concept development and analysis. Its applications in various fields, including bioinformatics, telecommunications, and robotic navigation, highlight the significance of this problem for further investigation. Most previous studies have focused on determining the metric dimension of specific graph classes. The determination of metric dimensions in graphs of arbitrary types and sizes requires reliable computational techniques or methods. Therefore, determining the metric dimension and various resolving sets in arbitrary graphs presents a highly intriguing challenge from both methodological and computational perspectives. Metaheuristic algorithms serve as computational approaches to finding optimal or near-optimal solutions to optimization problems by iteratively improving candidate solutions while considering the desired quality constraints. This study develops a metaheuristic-based method for determining the metric dimension and various resolving sets for both specific graph classes and general graphs. The proposed method is based on the Ant Colony Optimization (ACO) algorithm and the Binary-Gray Wolf Optimizer (B-GWO). The method has been tested on several graph classes, including complete graphs, complete bipartite graphs, cycle graphs, generalized antiprism graphs, wheel graphs, Jahangir graphs, friendship graphs, and path graphs. The findings indicate that metaheuristic algorithms effectively solve the metric dimension problem, detour metric dimension problem, bi-metric dimension problem, and mixed metric dimension problem with efficient computational time and competitive results.
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | Ant colony optimization algorithm; binary grey wolf optimizer algorithm; metric dimension; bi-metric dimension; mixed metric dimension, Algoritma ant colony optimization; algoritma binary grey wolf optimizer; dimensi metrik; dimensi bi-metrik; dimensi metrik campuran |
Subjects: | Q Science > QA Mathematics Q Science > QA Mathematics > QA336 Artificial Intelligence Q Science > QA Mathematics > QA76.9 Computer algorithms. Virtual Reality. Computer simulation. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44002-(S3) PhD Thesis |
Depositing User: | Hendy Hendy |
Date Deposited: | 31 Jul 2025 06:20 |
Last Modified: | 31 Jul 2025 06:20 |
URI: | http://repository.its.ac.id/id/eprint/124502 |
Actions (login required)
![]() |
View Item |