Simulasi Dinamika Molekuler terhadap Evolusi Pori yang Diinduksi oleh Aerasi pada Permukaan Membran Polyethersulfone (PES)

Purwanto, Belinda Kezia (2025) Simulasi Dinamika Molekuler terhadap Evolusi Pori yang Diinduksi oleh Aerasi pada Permukaan Membran Polyethersulfone (PES). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6008231021-Master_Thesis.pdf] Text
6008231021-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB)

Abstract

Penelitian ini mengeksplorasi evolusi pori permukaan pada tahap awal pada membran polyethersulfone (PES) yang difabrikasi menggunakan metode vapor-induced phase separation–non-solvent induced phase separation (VIPS–NIPS) melalui simulasi all-atom molecular dynamics (MD). Penelitian ini berfokus pada pemahaman interaksi tingkat molekuler antara PES, γ-butyrolactone (GBL) sebagai solvent, glycerol sebagai additive, dan water sebagai non-solvent untuk menjelaskan peran masing-masing dalam memengaruhi morfologi membran, khususnya pada permukaan atas tempat terjadinya paparan vapor. Beberapa sifat struktural seperti end-to-end distance (Ree), radius of gyration (Rg), mean squared displacement (MSD), radial distribution function (RDF), cohesive energy density (CED), hydrogen bonding, dan k-nearest neighbor (kNN) distances dianalisis. Hasil menunjukkan bahwa air dan gliserol secara signifikan memengaruhi konformasi rantai PES dan interaksi antara solvent dan polymer. Air bertindak sebagai pengganggu pada konsentrasi rendah dan sebagai jembatan pada konsentrasi lebih tinggi, sementara gliserol secara konsisten mendorong pemadatan rantai dan meningkatkan kohesi sistem melalui pembentukan ikatan hidrogen. Analisis ikatan hidrogen menunjukkan bahwa gliserol membentuk jaringan yang kuat dan stabil dengan PES dan GBL, yang secara bertahap terganggu akibat penambahan air. Analisis RDF dan kNN mengonfirmasi terjadinya restrukturisasi solvation shell serta persaingan interaksi antara air dan gliserol. Secara keseluruhan, studi ini menunjukkan bahwa gliserol bertindak sebagai additive pengarah struktur, sedangkan air mengatur dinamika solvation, yang keduanya secara kritis memengaruhi morfologi membran. Temuan ini memberikan wawasan fundamental terhadap proses phase separation selama fabrikasi membran dan menegaskan potensi simulasi MD dalam mendukung desain rasional membran berkinerja tinggi melalui pengendalian tingkat molekuler.
==============================================================================================================================
This study explores the early-stage surface pore evolution in polyethersulfone (PES) membranes fabricated using the vapor-induced phase separation–non-solvent induced phase separation (VIPS-NIPS) method through all-atom molecular dynamics (MD) simulations. The research focuses on understanding the molecular-level interactions among PES, γ-butyrolactone (GBL) as solvent, glycerol as additive, and water as non-solvent to elucidate their roles in influencing membrane morphology, particularly on the top surface where vapor exposure occurs. Key structural and interfacial properties—such as end-to-end distance (Ree), radius of gyration (Rg), mean squared displacement (MSD), radial distribution function (RDF), cohesive energy density (CED), hydrogen bonding, and k-nearest neighbor (kNN) distances—were analyzed. Results show that water and glycerol significantly influence PES chain conformation and solvent–polymer interactions. While water acts as a disruptor at low concentrations and a bridge at higher levels, glycerol consistently promotes chain compaction and enhances system cohesion through multivalent hydrogen bonding. Hydrogen bonding analysis revealed that glycerol forms strong, stable networks with both PES and GBL, which are progressively disrupted upon water addition. RDF and kNN analyses confirmed the restructuring of solvation shells and the competitive interplay between water and glycerol. Overall, this study demonstrates that glycerol acts as a structure-directing additive, while water modulates solvation dynamics, both critically affecting membrane morphology. These findings provide fundamental insights into the phase separation process during membrane fabrication and underscore the potential of MD simulations for guiding the rational design of high-performance membranes through molecular-level control.

Item Type: Thesis (Masters)
Uncontrolled Keywords: evolusi pori, ikatan hidrogen, molecular dynamics, phase separation, polyethersulfone, hydrogen bonding, molecular dynamics, phase separation, polyethersulfone, pore evolution
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > TP Chemical technology > TP1140 Polymers
T Technology > TP Chemical technology > TP159.M4 Membranes (Technology)
T Technology > TP Chemical technology > TP248.25.M46 Membrane separation
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24101-(S2) Master Thesis
Depositing User: Belinda Kezia Purwanto
Date Deposited: 05 Aug 2025 01:28
Last Modified: 05 Aug 2025 01:28
URI: http://repository.its.ac.id/id/eprint/124542

Actions (login required)

View Item View Item