Putra, Beryllyan Hacika Putra (2025) Sistem Estimasi Tegangan Tali Cable Stayed Berbasis Sensor Accelerometer Metode Flat Taut String. Masters thesis, INSTITUT TEKNOLOGI SEPULUH NOPEMBER.
![]() |
Text
6022231076-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (4MB) | Request a copy |
Abstract
Abstrak—Salah satu aspek krusial dalam sistem pemantauan kesehatan struktural (SHM) yaitu Estimasi tegangan kabel, khususnya pada struktur cable-stayed. Studi ini membandingkan dua pendekatan estimasi tegangan: metode langsung menggunakan load cell, dan metode tidak langsung berbasis analisis respons getaran kabel melalui sistem FPGA–akselerometer. Sistem yang dikembangkan memanfaatkan board FPGA Altera DE0-Nano untuk mengakuisisi sinyal percepatan dari sensor ADXL345 melalui antarmuka SPI, serta secara paralel mengirimkan data ke komputer melalui UART. Data dikumpulkan secara real-time dan dianalisis secara eksternal menggunakan algoritma Welch Fast Fourier Transform (FFT). Frekuensi fundamental hasil analisis digunakan dalam rumus
teori tali tegang (flat taut string) untuk menghitung estimasi tegangan kabel. Pengujian dilakukan pada rig uji terisolasi dengan berbagai kondisi tegangan kabel
yang diukur menggunakan load cell terkalibrasi. Hasil menunjukkan bahwa sistem mampu mengestimasi tegangan dengan rata-rata error relatif sebesar 4,8% dan nilai koefisien determinasi (R²) sebesar 0,963 terhadap pembacaan load cell, serta menunjukkan repeatability yang baik di dua tingkat tegangan berbeda. Meskipun menggunakan sensor low-cost ADXL345 dengan nilai Signal-to-Noise Ratio (SNR) rata-rata sekitar 25,9 dB, sistem ini menunjukkan akurasi yang cukup tinggi dan dapat diandalkan. Oleh karena itu, pendekatan FPGA–akselerometer ini dinilai layak sebagai alternatif non-invasif dan efisien untuk estimasi tegangan kabel
dalam aplikasi SHM
======================================================================================================================================
One of the crucial aspects of Structural Health Monitoring (SHM) systems is cable tension estimation, particularly in cable-stayed structures. This study compares two tension estimation approaches: a direct method using a calibrated
load cell, and an indirect method based on vibration response analysis via an FPGA–accelerometer system. The developed system employs an Altera DE0-Nano FPGA board to acquire acceleration signals from an ADXL345 sensor via SPI
interface and concurrently transmits data to a host computer through UART. The data is collected in real time and analyzed externally using the Welch Fast Fourier Transform (FFT) algorithm. The extracted fundamental frequency is then used in the flat taut string equation to estimate cable tension. Experiments were conducted on an isolated test rig under varying tension conditions, with reference measurements obtained from a calibrated load cell. Results show that the system achieves an average relative error of 4.8% and a determination coefficient (R²) of 0.963 compared to load cell readings, while also demonstrating good repeatability across two different tension levels. Despite utilizing a low-cost ADXL345 sensor with an average Signal-to-Noise Ratio (SNR) of approximately 25.9 dB, the system
delivers sufficiently high accuracy and reliability. Therefore, this FPGA–accelerometer approach is considered a feasible and efficient non-invasive alternative for cable tension estimation in SHM applications.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | need bussines partner and expanding my thesis, contact me further |
Uncontrolled Keywords: | ADXL345 accelerometer, DE0-Nano, FPGA, taut string theory, cable tension estimation, Akselerometer ADXL345, DE0 Nano, FPGA, taut string, Tegangan kabel |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA1573 Detectors. Sensors T Technology > TA Engineering (General). Civil engineering (General) > TA355 Vibration. T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7871.674 Detectors. Sensors T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7878 Electronic instruments |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20101-(S2) Master Thesis |
Depositing User: | Beryllyan Hacika Putra |
Date Deposited: | 31 Jul 2025 06:35 |
Last Modified: | 31 Jul 2025 06:35 |
URI: | http://repository.its.ac.id/id/eprint/124737 |
Actions (login required)
![]() |
View Item |