Afkar, M. Johanif (2025) Analisis Numerik Pengaruh Penambahan Biomassa Sawdust Pada Elevasi A, B, C, D Dan E Pada Pulverized Coal Boiler Terhadap Stress Dan Rupture Time Superheater Header. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5007211054-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (11MB) | Request a copy |
Abstract
Indonesia berkomitmen untuk mencapai net zero emissions pada tahun 2060, sehingga solusi
terbaik untuk PLTU di Indonesia adalah co-firing biomassa. Penggunaan biomassa dalam
jumlah besar dapat menyebabkan delay combustion setelah titik FEGT (Furnace Exit Gas
Temperature), yang menunjukkan keterlambatan pembakaran komponen fixed carbon. Hal ini
memengaruhi distribusi temperatur dalam boiler dan berpotensi menyebabkan overheating pada
komponen seperti superheater, serta mempercepat kerusakan seperti cracking atau creep dalam
jangka waktu lama. Untuk mengetahui umur pakai material akibat co-firing, digunakan metode
rupture time dan Larson–Miller Parameter dengan membandingkan skenario pembakaran
100% batubara dan co-firing 10% biomassa sawdust pada berbagai elevasi A, B, C, D dan E,
baik untuk tube maupun sambungan tube–header. Hasil penelitian menunjukkan bahwa injeksi
100% batubara menghasilkan temperatur fluegas lebih tinggi dari burner hingga FEGT.
Sebaliknya, pada bagian di atas FEGT hingga final reheater, temperatur fluegas lebih tinggi
pada co-firing 10% biomassa. Injeksi biomassa di elevasi bawah menghasilkan temperatur
tinggi hingga final reheater karena pembakaran volatile matter yang cepat, tetapi mengalami
delay combustion di bagian atas. Sedangkan injeksi di elevasi atas menghasilkan temperatur
lebih rendah secara keseluruhan karena pembakaran tidak sempurna. Injeksi 10% biomassa
pada elevasi A menghasilkan temperatur fluegas dan temperatur steam superheater platen
tertinggi dibanding elevasi lainnya. Namun, akibat delay combustion, umur rupture time header
superheater platen menjadi lebih pendek dibanding injeksi di elevasi atas. Peningkatan umur
rupture time tube ke – 70 saat injeksi dipindahkan dari elevasi bawah ke elevasi atas mencapai
peningkatan umur 7,49% dari 8.84 tahun pada sambungan tube–header dan peningkatan umur
64,2% dari 4.73 tahun pada tube, yang menunjukkan pentingnya pemilihan lokasi injeksi
biomassa untuk menghindari kerusakan dini pada sistem boiler.
===================================================================================================================================
Indonesia is committed to achieving net-zero emissions by 2060, so the best solution for coal
fired power plants in Indonesia is biomass co-firing. The use of large amounts of biomass can
cause combustion delays after the Furnace Exit Gas Temperature (FEGT) point, which indicates
a delay in the combustion of fixed carbon components. This affects the temperature distribution
in the boiler and has the potential to cause overheating in components such as the superheater,
as well as accelerate damage such as cracking or creep over time. To determine the service life
of materials due to co-firing, the rupture time method and Larson–Miller Parameter were used
by comparing scenarios of 100% coal combustion and 10% sawdust biomass co-firing at
various elevations A, B, C, D, and E, both for tubes and tube-header connections. The results
showed that 100% coal injection resulted in higher fluegas temperatures from the burner to the
FEGT. Conversely, in the section above the FEGT to the final reheater, fluegas temperatures
were higher with 10% biomass co-firing. Biomass injection at the lower elevation produces
high temperatures up to the final reheater due to the rapid combustion of volatiles, but
experiences a combustion delay at the top. Meanwhile, injection at higher elevations produces
lower temperatures overall due to incomplete combustion. Injection of 10% biomass at
elevation A produces the highest fluegas temperature and steam temperature in the platen
superheater compared to other elevations. However, due to the combustion delay, the rupture
time life of the platen superheater header is shorter than injection at the upper elevation. The
increase in rupture time life of the 70th tube when injection is moved from the lower elevation
to the upper elevation reaches a 7.49% increase in life from 8.84 years at the tube-header
connection and a 64.2% increase in life from 4.73 years at the tube, which indicates the
importance of selecting the biomass injection location to avoid premature damage to the boiler
system.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Co-Firing, Larson-Miller Parameter, Rupture Time, Superheater Header, Co-Firing, Larson-Miller Parameter, Rupture Time, Superheater Header |
Subjects: | T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers T Technology > TJ Mechanical engineering and machinery > TJ263.5 Boilers (general) T Technology > TJ Mechanical engineering and machinery > TJ265.E23 Thermodynamics. |
Divisions: | Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis |
Depositing User: | M. Johanif Afkar |
Date Deposited: | 31 Jul 2025 08:20 |
Last Modified: | 31 Jul 2025 08:20 |
URI: | http://repository.its.ac.id/id/eprint/124816 |
Actions (login required)
![]() |
View Item |