Enkripsi Selektif Yang Efisien Pada Berkas Multimedia Dengan Perlindungan Kunci Advanced Encryption Standard Dan Elliptic Curve Cryptography

Raga, Sejati Bakti (2025) Enkripsi Selektif Yang Efisien Pada Berkas Multimedia Dengan Perlindungan Kunci Advanced Encryption Standard Dan Elliptic Curve Cryptography. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5025201007-Undergraduate_Thesis.pdf] Text
5025201007-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (2MB) | Request a copy

Abstract

Dengan pertukaran informasi digital yang masif di berbagai platform, isu privasi dan
keamanan data menjadi krusial, terutama karena konten multimedia dan teks sehari-hari sering
kali mengandung PII yang tidak disadari sensitif, seperti wajah atau nomor identitas. Enkripsi
penuh sering kali tidak efisien secara komputasi dan mengurangi kegunaan data non-sensitif,
mendorong kebutuhan akan perlindungan bertarget. Penelitian ini mengusulkan metode
enkripsi selektif yang secara otomatis mendeteksi PII menggunakan teknik computer vision dan
regular expressions. Data sensitif yang teridentifikasi kemudian dienkripsi efisien dengan AES
dalam mode Counter (CTR), sementara manajemen kunci diamankan menggunakan ECC
dalam sistem kriptografi hibrida. Meskipun proses deteksi PII dapat memperkenalkan overhead
komputasi awal, efisiensi pendekatan ini terletak pada preservasi kegunaan dan integritas data
non-sensitif, memungkinkan akses dan analisis berkelanjutan tanpa dekripsi penuh. Hal ini
mendukung kemudahan distribusi dan kontrol privasi yang granular, menjadikannya solusi
relevan untuk melindungi informasi pribadi dalam skenario penggunaan praktis.
========================================================================================================================
With the massive exchange of digital information across various platforms, data privacy
and security have become crucial, especially since everyday multimedia and text content often
contain inadvertently sensitive PII , such as faces or identification numbers. Full encryption is
often computationally inefficient and reduces the utility of non-sensitive data, prompting the
need for targeted protection. This research proposes a selective encryption method that
automatically detects PII using computer vision techniques and regular expressions. Identified
sensitive data is then efficiently encrypted with AES in Counter (CTR) mode, while key
management is secured using ECC in a hybrid cryptographic system. Although the PII detection
process may introduce initial computational overhead, the efficiency of this approach lies in the
preservation of the usability and integrity of non-sensitive data, allowing continuous access and
analysis without full decryption. This supports ease of distribution and granular privacy control,
making it a relevant solution for protecting personal information in practical usage scenarios.

Item Type: Thesis (Other)
Uncontrolled Keywords: Enkripsi Selektif, PII, AES-CTR, ECC, Computer Vision, Regular Expressions, Keamanan Multimedia, Enkripsi Gambar dan Video. ======================================================================================================================== Selective Encryption, PII, AES-CTR, ECC, Computer Vision, Regular Expressions, Multimedia Security, Image and Video Encryption.
Subjects: Q Science > QA Mathematics > QA76.9.A25 Computer security. Digital forensic. Data encryption (Computer science)
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis
Depositing User: Sejati Bakti Raga
Date Deposited: 31 Jul 2025 07:46
Last Modified: 31 Jul 2025 07:46
URI: http://repository.its.ac.id/id/eprint/124824

Actions (login required)

View Item View Item