Afifah, Nurul (2025) Penentuan Dimensi Partisi pada Graf Circular Broom dan Graf Hasil Operasi Combnya. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6002222003_Master Thesis.pdf - Accepted Version Restricted to Repository staff only Download (6MB) | Request a copy |
Abstract
Misalkan G adalah sebuah graf terhubung dengan himpunan simpul V(G) dan himpunan sisi E(G). Misalkan v∈V(G) dan S⊆V(G), jarak antara v dan S didefinisikan sebagai d(v,S)=min{d(v,x)|x ∈ S}. Untuk sebuah partisi Π={S_1,S_2,· · · ,S_k } dari V(G), representasi v terhadap Π adalah r(v|Π)=(d(v,S_1),d(v,S_2),· · ·,d(v,S_k)). Partisi Π disebut partisi pembeda dari G jika semua representasi dari setiap simpul v∈V(G) berbeda satu sama lain. Dimensi partisi, dilambangkan dengan pd(G), adalah bilangan bulat terkecil k sedemikian hingga G mempunyai sebuah partisi pembeda dengan k anggota. Penelitian ini membahas mengenai dimensi partisi graf circular broom 〖B_(m,n) ⨀▒C〗_r dan graf hasil operasi combnya 〖B_(m,n) ⊳ C〗_r, dengan B_(m,n) adalah graf sapu dan C_r dalah graf cycle, m adalah simpul backbone pada graf sapu, n adalah simpul pendant pada graf sapu, dan r adalah simpul pada graf cycle. Penelitian ini membuktikan dimensi partisi graf sapu, graf circular broom, dan graf hasil operasi combnya. Berdasarkan hasil penelitian, diperoleh pd(〖B_(m,n) ⨀▒C〗_r )=n+4untukm=2,n≥2,r≥3 dan pd(〖B_(m,n) ⨀▒C〗_r )=n+3untuk m≥3,n≥2,r≥3, serta pd(〖B_(m,n) ⊳ C〗_r )=n+3 untuk m=2,n≥2,r≥3 dan pd(〖B_(m,n) ⊳ C〗_r )=n+2 untuk m≥3,n≥2,r≥3.
===============================================================================================================================
Let G be a connected graph with vertex set V(G) and edge set E(G). Let v∈V(G) and S⊆V(G). The distance between v and S is defined as d(v,S)=min{d(v,x)|x ∈ S}. For a partition Π={S_1,S_2,· · · ,S_k } of V(G), the representation of v with respect to Π is given by r(v|Π)=(d(v,S_1),d(v,S_2),· · ·,d(v,S_k)). A partition Π is called a resolving partition of G if all representations of vertices v∈V(G) are distinct. The partition dimension, denoted by pd(G), is the smallest positive integer k such that G admits a resolving partition with k parts. This study discusses the partition dimension of the circular broom graph 〖B_(m,n) ⨀ C〗_r and the graph resulting from the comb operation 〖B_(m,n) ⊳ C〗_r. Here, B_(m,n) is a broom graph and C_r is a cycle graph. In this context, m represents the backbone vertices of the broom graph, n denotes the pendant vertices in the broom graph, and r refers to the vertices in the cycle graph. This study prove that the partition dimension for the broom graph, the circular broom graph, and the graph produced by the comb operation. Based on the results, it was found that pd(〖B_(m,n) ⨀▒C〗_r )=n+4 for m=2,n≥2,r≥3 and pd(〖B_(m,n) ⨀▒C〗_r )=n+3 for m≥3,n≥2,r≥3, while pd(〖B_(m,n) ⊳ C〗_r )=n+3 for m=2,n≥2,r≥3 and pd(〖B_(m,n) ⊳ C〗_r )=n+2 for m≥3,n≥2,r≥3.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Dimensi Partisi, Graf Circular Broom, Graf Cycle, Graf Sapu, Operasi Comb |
Subjects: | Q Science Q Science > QA Mathematics Q Science > QA Mathematics > QA166 Graph theory |
Divisions: | Faculty of Mathematics and Science > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | Nurul Afifah |
Date Deposited: | 01 Aug 2025 03:24 |
Last Modified: | 01 Aug 2025 03:24 |
URI: | http://repository.its.ac.id/id/eprint/124879 |
Actions (login required)
![]() |
View Item |