Analisis Tingkat Adopsi Dan Forecasting Electric 2-Wheelers (E2W) Di Indonesia Dan Dampak Kebijakan Terkait E2W Dengan Menggunakan Bass Diffusion Model

Fadhila, Ahmad Rifa'i (2025) Analisis Tingkat Adopsi Dan Forecasting Electric 2-Wheelers (E2W) Di Indonesia Dan Dampak Kebijakan Terkait E2W Dengan Menggunakan Bass Diffusion Model. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5010201184-Undergraduate_Thesis.pdf] Text
5010201184-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (7MB) | Request a copy

Abstract

Penggunaan moda transportasi alternatif seperti Electric Vehicle (EV) dapat membantu menekan emisi karbon penyebab efek rumah kaca. Pemerintah Indonesia telah mengupayakan percepatan adopsi kendaraan E2W di Indonesia dengan memberlakukan beberapa kebijakan. Untuk mengidentifikasi dan forecasting pola adopsi teknologi baru seperti E2W ini maka digunakan pendekatan matematis seperti bass diffusion model. Dengan menggunakan ekstensi dari pendekatan ini yang dinamakan generalized bass model, maka dapat dilakukan identifikasi pengaruh kebijakan-kebijakan fiskal terhadap tingkat adopsi E2W dengan memodelkan model bass dengan variabel eksternal harga atau biaya. Pada penelitian ini, dipilih 4 kebijakan E2W sebagai amatan. Kemudian disusun 3 skenario penelitian berbeda yang meliputi skenario non kebijakan, skenario eksisting, dan skenario penerapan kebijakan pelengkap. Diketahui per tahun 2045 dengan kondisi kebijakan eksisting, Indonesia diprediksi meraih S(t)sebesar 69% atau sebanyak 157 juta unit E2W. Selain itu pada skenario dengan kebijakan pelengkap menghasilkan nilai delta 1,5 kali lipat dibandingkan skenario eksisting. Pada penelitian ini juga dilakukan mengenai analisis sensitivitas untuk menganalisis terkait sensitivitas S(t) dan signifikansi kebijakan terhadap nominal insentif dan pengenaan pajak serta beberapa variabel lain. Ditemukan bahwa S(t) dan signifikansi kebijakan berbanding lurus dengan jumlah nominal insentif dan pengenaan pajak. Dengan catatan diketahui juga peningkatan S(t) dan signifikansi tidak berkorelasi secara linear terhadap peningkatan nominal insentif dan pajak.
=================================================================================
The use of alternative transportation modes such as Electric Vehicles (EVs) can help reduce carbon emissions that contribute to the greenhouse effect. The Indonesian government has been working to accelerate the adoption of electric two-wheelers (E2Ws) through the implementation of various policies. To analyze and forecast the adoption pattern of E2Ws, a mathematical approach known as the Bass Diffusion Model is used. In this study, an extended version called the Generalized Bass Model is applied to assess the impact of fiscal policies on E2W adoption by incorporating it to external variables such as price or cost. In this research, three different scenarios are built which are consist of a baseline scenario with no policy, second scenario is an existing scenario and third is a scenario with complementary policy. By 2045, under the existing policy scenario, Indonesia is projected to reach an adoption rate S(t) of 69%, equivalent to 157 million E2W units. The complementary policy scenario, meanwhile, produce a delta that is 1.5 times higher than the existing policy scenario. This study also includes sensitivity analysis to explore how S(t) and policy significance respond to changes in subsidy levels, taxation levels, and several other variables. The results indicate that both S(t) and policy impact are positively correlated with the amount of the subsidy and tax levels. However, the increase is not linear - meaning that raising subsidy or taxes does not result in a proportional increase in adoption or policy effectiveness.

Item Type: Thesis (Other)
Uncontrolled Keywords: Bass Diffusion Model, Innovation, Immitation, Forecasting, Electric 2-Wheelers (E2W)
Subjects: T Technology > T Technology (General) > T174 Technological forecasting
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26201-(S1) Undergraduate Thesis
Depositing User: Ahmad Rifa'i Fadhila
Date Deposited: 04 Aug 2025 12:42
Last Modified: 04 Aug 2025 12:42
URI: http://repository.its.ac.id/id/eprint/124943

Actions (login required)

View Item View Item