Djaya, Yesaya Ananda (2025) Prediksi Ketepatan Kelulusan Program Sarjana Mahasiswa ITS Dengan Deep Neural Network. Other thesis, :InstitutTeknologi Sepuluh Nopember.
![]() |
Text
5002211156-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (10MB) |
Abstract
Pendidikan, sebagai sektor vital dalam kemajuan suatu bangsa, menghadapi tantangan terkait akurasi kelulusan mahasiswa. Akurasi kelulusan mencerminkan kompetensi mahasiswa, sehingga prediksi kelulusan menjadi sangat krusial untuk perencanaan akademik. Dalam penelitian ini, kami mengkaji penerapan Deep Neural Network (DNN) dalam kasus mahasiswa sarjana. Dengan memanfaatkan DNN dan
teknik cross-validation, model ini dapat mencapai akurasi sebesar 95.03%, presisi 97.18%, recall 96.56%, dan F-1 Score 96.87%, dengan nilai loss 18.40%. Selain itu, model ini juga mampu mengidentifikasi variabel-variabel paling berpengaruh terhadap akurasi kelulusan mahasiswa, sehingga dapat memberikan panduan yang lebih baik untuk perencanaan akademik.
=====================================================================================================================================
Education, as an important sector in the progress of a nation, faces challenges regarding the accuracy of student graduation. Graduation accuracy reflects student competence, making graduation prediction is crucial for academic planning. In here, we study Deep Neural Network (DNN) in the case of bachelor students. By leveraging DNN and cross-validation techniques, this model achieves an accuracy of 95.03%, a precision of 97.18%, a recall of 96.56%, and an F1-score of 96.87%, with a loss value of 18.40%. Additionally, this model is expected to identify the most influential variables affecting student graduation accuracy, providing better guidance for academic planning.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Deep Neural Network, Kelulusan Tepat Waktu, Mahasiswa Sarjana, Prediksi Kelulusan. Deep Neural Network, Timely Graduation, Bachelor Students, Graduation Prediction. |
Subjects: | Q Science > QA Mathematics > QA336 Artificial Intelligence Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science) |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis 61101-Magister Management Technology |
Depositing User: | Yesaya Ananda Djaya |
Date Deposited: | 31 Jul 2025 09:06 |
Last Modified: | 31 Jul 2025 09:06 |
URI: | http://repository.its.ac.id/id/eprint/125197 |
Actions (login required)
![]() |
View Item |