Solusi Numerik Metode Adams Basforth-Moulton Pada Model Penyebaran Praktik Pinjaman Online

Hidayat, Aditiya Wahyu (2025) Solusi Numerik Metode Adams Basforth-Moulton Pada Model Penyebaran Praktik Pinjaman Online. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5002211005-Undergraduated-Thesis.pdf] Text
5002211005-Undergraduated-Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Perkembangan teknologi di era digital telah membawa perubahan signifikan dalam berbagai aspek kehidupan, termasuk dalam bidang keuangan. Salah satu inovasi yang muncul adalah pinjaman online (fintech lending), yang memungkinkan masyarakat untuk meminjam uang secara mudah melalui platform digital. Fintech lending memiliki dampak positif terhadap stabilitas sistem keuangan Indonesia, antara lain dapat meningkatkan akses masyarakat terhadap kredit dan memberikan akses kredit kepada orang-orang yang tidak memiliki akses ke lembaga keuangan konvensional, seperti bank. Oleh karena itu, perlu adanya penelitian mengenai pemetaan penyebaran pengguna. Model penyebaran praktik pinjaman online yaitu worker, owner, borrower, dan paid (WOBP). Pembahasan dimulai dengan menentukan solusi awal dengan metode Runge-Kutta orde empat, nilai prediksi dan koreksi dengan metode Adams Bashforth-Moulton (ABM) orde empat, simulasi dan analisis hasil. Hasil analisis menunjukkan bahwa penggunaan metode Adams Bashforth-Moulton pada model WOBP untuk memprediksi jumlah populasi pada penyebaran praktik pinjaman online menghasilkan nilai galat relatif yang tidak terlalu signifikan perbedaannya antara solusi numerik ABM dengan data realnya. Berdasarkan pada perhitungan galat relatif yang telah dilakukan, diperoleh nilai rata-rata galat relatif sejati untuk masing-masing variabel, yaitu variabel W sebesar 0,82%, variabel O sebesar 3,68%., variabel B sebesar 5,42%, dan variabel P sebesar 6,35%. Nilai galat yang relatif kecil ini menunjukkan bahwa solusi numerik yang diperoleh menggunakan metode Adams Bashforth-Moulton mampu mendekati data aktual populasi praktik pinjaman online
======================================================================================================================================
Technological developments in the digital age have brought significant changes to various aspects of life, including finance. One such innovation is online lending (fintech lending), which allows people to borrow money easily through digital platforms. Fintech lending has a positive impact on the stability of Indonesia's financial system, including increasing public access to credit and providing credit access to people who do not have access to conventional financial institutions, such as banks. Therefore, research on the mapping of user distribution is needed. The model for mapping the spread of online lending practices is worker, owner, borrower, and paid (WOBP). The discussion begins by determining the initial solution using the fourth-order Runge-Kutta method, prediction and correction values using the fourth- order Adams Bashforth-Moulton (ABM) method, simulation, and analysis of results. The analysis results show that the use of the Adams Bashforth-Moulton method in the WOBP model to predict the population size in the distribution of online lending practices yields relative error values that are not significantly different between the ABM numerical solution and the actual data. Based on the relative error calculations performed, the average true relative error values for each variable were obtained, namely variable W is 0.82%, variable O is 3.68%, variable B is 5.42%, and variable P is 6.35%. This relatively small error value indicates that the numerical solution obtained using the Adams Bashforth-Moulton method is able to approximate the actual data of online lending practices population.

Item Type: Thesis (Other)
Uncontrolled Keywords: Online Lending, WOBP Model, Runge-Kutta, Adams Bashforth-Moulton. Pinjaman Online, Model WOBP, Runge-Kutta, Adams Bashforth-Moulton.
Subjects: Q Science > QA Mathematics > QA372.B9 Differential equations--Numerical solutions. Runge-Kutta formulas--Data processing.
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Aditiya Wahyu Hidayat
Date Deposited: 01 Aug 2025 02:51
Last Modified: 01 Aug 2025 02:51
URI: http://repository.its.ac.id/id/eprint/125438

Actions (login required)

View Item View Item