Pengembangan Proses Produksi Biohidrokarbon dengan Mild Condition dari Jerami Padi

Krisnayana, Rina (2025) Pengembangan Proses Produksi Biohidrokarbon dengan Mild Condition dari Jerami Padi. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 7009221003-Doctoral.pdf] Text
7009221003-Doctoral.pdf - Accepted Version
Restricted to Repository staff only

Download (8MB) | Request a copy

Abstract

Peningkatan kebutuhan energi global serta dampak lingkungan dari penggunaan bahan bakar minyak bumi, gas alam dan batu bara mendorong pengembangan sumber energi terbarukan yang berkelanjutan. Penelitian ini mengusulkan proses konversi jerami padi (biomassa lignoselulosa yang melimpah di Indonesia) menjadi biohidrokarbon cair, khususnya heksana, dengan kondisi operasi ringan (mild condition) yaitu suhu < 150 °C dan tekanan 1 atmosfer. Proses yang diusulkan terdiri atas beberapa tahap yaitu ekstraksi selulosa dengan multi pretreatment method (mekanik 5000 rpm., hidrolisis basa NaOH dan pemanasan), konversi selulosa menjadi sorbitol menggunakan fotonanokatalis berbasis mangan ferrite (MnLaFeO₃ atau MnCuFe₂O₄ atau MnZnFe₂O₄), konversi sorbitol menjadi iodoheksana dengan reagen alternatif yang lebih ekonomis (NaI, H₂SO₄, HCOOH, dan etanol), dan konversi iodoheksana menjadi heksana melalui reduksi logam (Al atau Mg atau Na dalam etanol). Jalur alternatif langsung dari sorbitol ke heksana juga dikembangkan menggunakan fotonanokatalis TiO₂ atau ZnO. Penelitian ini mengintegrasikan pendekatan desain eksperimen (DoE), pemodelan empiris, serta optimisasi dengan metode Response Surface Methodology (RSM), algoritma genetika (GA), dan Particle Swarm Optimization (PSO) untuk menentukan kondisi operasi optimal. Pada penelitian ini, model regresi 2-factor interaction (2FI) dibangun berdasarkan data eksperimen untuk memprediksi massa, yield, dan profit. Validasi statistik menunjukkan akurasi tinggi (R² > 0,95, RMSE < 10%), sedangkan analisis sensitivitas mengidentifikasi bahwa energi per detik dan lama penyinaran memiliki pengaruh dominan terhadap respon proses. Hasil optimisasi menggunakan metode Response Surface Methodology (RSM), Genetic Algorithm (GA), dan Particle Swarm Optimization (PSO) menunjukkan bahwa PSO mampu menghasilkan profit tertinggi dengan waktu konvergensi tercepat. Analisis keekonomian memperkirakan bahwa biaya produksi heksana per gram Rp 633 dengan potensi margin profit Rp 3.903 per gram. Penelitian ini tidak hanya menunjukkan kelayakan teknis dan ekonomis proses berbasis fotonanokatalis, namun juga memberikan kerangka awal untuk pengembangan sistem produksi biohidrokarbon berkelanjutan berbasis biomassa lignoselulosa di masa depan dan memanfaatkan proses berbasis air, dan material daur ulang, sehingga berkontribusi terhadap praktik green process dalam pengembangan energi terbarukan.
=======================================================================================================================================
The increasing global demand for energy, along with the environmental impacts associated with the use of petroleum, natural gas, and coal, has driven the development of sustainable renewable energy sources. This study proposes a process for converting rice straw (a lignocellulosic biomass abundant in Indonesia) into liquid biohydrocarbons, specifically hexane, under mild operating conditions (temperature <150 °C and pressure of 1 atm). The proposed process consists of multiple stages, including cellulose extraction using a multi-pretreatment method (mechanical treatment at 5000 rpm, alkaline hydrolysis with NaOH, and heating), conversion of cellulose to sorbitol using manganese ferrite-based photonano-catalysts (MnLaFeO₃, MnCuFe₂O₄, or MnZnFe₂O₄), conversion of sorbitol to iodohexane using more economical alternative reagents (NaI, H₂SO₄, HCOOH, and ethanol), and conversion of iodohexane to hexane through metal reduction (Al, Mg, or Na in ethanol). An alternative direct pathway from sorbitol to hexane was also developed using TiO₂ or ZnO photonano-catalysts. This research integrates Design of Experiments (DoE), empirical modeling, and optimization techniques including Response Surface Methodology (RSM), Genetic Algorithms (GA), and Particle Swarm Optimization (PSO) to determine the optimal operating conditions. In this study, a 2-factor interaction (2FI) regression model was built based on experimental data to predict mass, yield, and profit. Statistical validation showed high accuracy (R² > 0.95, RMSE < 10%), while sensitivity analysis identified that energy per second and irradiation time had a dominant influence on the process response. Optimization results using the Response Surface Methodology (RSM), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) methods showed that PSO was able to produce the highest profit with the fastest convergence time. Economic analysis estimated that the production cost of hexane per gram was IDR 633 with a potential profit margin of IDR 3,903 per gram. This study not only demonstrated the technical and economic feasibility of the photonanocatalyst-based process, but also provided an initial framework for the development of a sustainable biohydrocarbon production system based on lignocellulosic biomass in the future and utilizing water-based processes and recycled materials, thus contributing to green process practices in renewable energy development.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: pemodelan, optimisasi, jerami padi, C6H14, mild condition, modeling, optimization, rice straw, C6H14, mild conditions
Subjects: T Technology > T Technology (General)
T Technology > TP Chemical technology > TP339 Ethanol as fuel. Biomass energy.
Divisions: Faculty of Industrial Technology > Physics Engineering > 30001-(S3) PhD Thesis
Depositing User: Rina Krisnayana
Date Deposited: 05 Aug 2025 04:13
Last Modified: 05 Aug 2025 04:13
URI: http://repository.its.ac.id/id/eprint/125470

Actions (login required)

View Item View Item