Savina, Naura Putri (2025) Pemodelan Faktor-Faktor Yang Memengaruhi Indeks Pembangunan Gender (IPG) Di Provinsi Jawa Timur Menggunakan Regresi Data Panel. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5003211136-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Pembangunan nasional menekankan peningkatan kualitas sumber daya manusia sebagai kunci kesejahteraan, yang diukur melalui Indeks Pembangunan Manusia (IPM). Walaupun IPM Indonesia menunjukkan tren positif, capaian tersebut belum menunjukkan keadilan antar kelompok masyarakat, terutama antara laki-laki dan perempuan. Indeks Pembangunan Gender (IPG) merupakan indikator yang mengukur capaian pembangunan antara perempuan dan laki-laki dalam dimensi kesehatan, pengetahuan, dan standar hidup yang layak. Meskipun IPG Provinsi Jawa Timur mengalami peningkatan dari tahun 2018-2023, ketimpangan antar kabupaten/kota masih cukup mencolok. Oleh karena itu, dilakukan analisis untuk mendeskripsikan karakteristik wilayah di Provinsi Jawa Timur berdasarkan IPG dan faktor yang diduga memengaruhinya, serta melakukan pemodelan IPG di Provinsi Jawa Timur menggunakan regresi data panel, yakni metode dengan menggabungkan data cross-section dan time series sehingga mampu menangkap karakteristik dari masing-masing kabupaten/kota pada periode tertentu. Penelitian ini menghasilkan model estimasi terbaik yaitu Fixed Effect Model (FEM) dengan robust standard error menggunakan metode Driscoll-Kraay. Berdasarkan analisis tersebut, variabel yang berpengaruh signifikan adalah angka kesakitan perempuan, penolong terakhir persalinan oleh tenaga medis, Angka Partisipasi Sekolah (APS) perempuan usia 16-18 tahun, Tingkat Partisipasi Angkatan Kerja (TPAK) perempuan, dan sumbangan pendapatan perempuan, serta kategori IPG. Model ini menghasilkan R-squared sebesar 99,37%.
=========================================================================================================================================
National development emphasizes the improvement of human resource quality as a key driver of welfare, which is measured through the Human Development Index (HDI). Although Indonesia’s HDI shows a positive trend, this achievement does not yet reflect equity across different societal groups, particularly between men and women. The Gender Development Index (GDI) is an indicator that measures development outcomes between women and men in terms of health, knowledge, and a decent standard of living. While the GDI in East Java Province has increased from 2018 to 2023, disparities between districts/cities remain significant. Therefore, an analysis was conducted to describe the regional characteristics of East Java Province based on the GDI and the factors presumed to influence it, as well as to model the GDI using panel data regression, a method that combines cross-sectional and time-series data, allowing the model to capture the specific characteristics of each district/city across different time periods. This study identified the Fixed Effects Model (FEM) with Driscoll-Kraay robust standard error as the best estimation model. The variables found to have a significant effect include female morbidity rate, percentage of births assisted by medical personnel, female school participation rate (ages 16-18), female labor force participation rate, women's income contribution, and the IPG category. The model yields an R-squared of 99,37%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Fixed Effect Model, Indeks Pembangunan Gender, Regresi Data Panel, Fixed Effect Model, Gender Development Index, Panel Data Regression |
Subjects: | H Social Sciences > HA Statistics H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics H Social Sciences > HA Statistics > HA31.3 Regression. Correlation. Logistic regression analysis. H Social Sciences > HA Statistics > HA31.7 Estimation H Social Sciences > HQ The family. Marriage. Woman |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Naura Putri Savina |
Date Deposited: | 01 Aug 2025 05:56 |
Last Modified: | 01 Aug 2025 05:56 |
URI: | http://repository.its.ac.id/id/eprint/125539 |
Actions (login required)
![]() |
View Item |