Karakteristik Knocking Pada Mesin Diesel Dual-Fuel Dengan Variasi Bahan Bakar Biodiesel-Hidrogen

Roziqi, Ahmad Khoirur (2015) Karakteristik Knocking Pada Mesin Diesel Dual-Fuel Dengan Variasi Bahan Bakar Biodiesel-Hidrogen. Masters thesis, INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA.

[thumbnail of 6007231009-Undergraduate_Thesis.pdf] Text
6007231009-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (4MB)

Abstract

Kekhawatiran yang semakin meningkat terhadap ketergantungan pada bahan bakar fosil dan dampak lingkungannya telah mendorong penelitian tentang alternatif bahan bakar terbarukan. Penelitian ini menyelidiki penerapan sistem dualfuel yang menggunakan biodiesel dan hidrogen pada mesin diesel untuk mengetahui karakteristik knocking yang dihasilkan dari diesel dual fuel BiodieselHidrogen. Penelitian ini berfokus pada variasi waktu injeksi (SOI) dan durasi injeksi (DOI) hidrogen pada sistem dual-fuel, dengan tujuan untuk mengeksplorasi pengaruhnya terhadap karakteristik knocking dan performa mesin. Metodologi yang digunakan melibatkan pengujian mesin diesel yang menggunakan campuran biodiesel CPO dan hidrogen, dengan variasi nilai SOI (40, 60,80,100, dan 120) dan DOI (60, 80,100, dan 120) untuk mengamati pengaruhnya terhadap efisiensi pembakaran, konsumsi bahan bakar, dan tingkat emisi. Prosedur pengujian mencakup pengaturan konsentrasi hidrogen (2,5 lpm – 15 lpm) dan variasi beban (1000 – 5000 W) serta kecepatan mesin (1000 – 2000 rpm) untuk mengumpulkan data mengenai metrik kinerja utama dan emisi. Data kinerja yang direkam meliputi daya rem (BP), efisiensi termal rem (BTE), Heat rate release (HRR) dan Knocking bar Hasil menunjukkan bahwa peningkatan debit H₂ dari 2.5 hingga 10 lpm menyebabkan peningkatan knocking secara signifikan, dengan nilai ekstrem hingga 7.3 bar pada konfigurasi DOI 60° dan SOI 120°, yang berpotensi merusak mesin. Sebaliknya, knocking minimal tercapai pada debit H₂ 2.5 lpm, DOI 140°, dan SOI 40°, dengan tekanan hanya 1.05 bar. Knocking juga dipengaruhi oleh konfigurasi injeksi, di mana SOI lambat (≥100°) dan DOI pendek (60°) meningkatkan tekanan osilasi, sementara DOI panjang (≥100°) membantu meredamnya. Performa mesin optimal tercapai pada debit H₂ 2.5–5 lpm, SOI 60°, dan DOI 60–80°, yang menghasilkan efisiensi termal hingga 30% dan HRR yang terkonsentrasi di sekitar TDC. Dengan demikian, konfigurasi tersebut direkomendasikan untuk mencapai keseimbangan antara performa dan kestabilan pembakaran dalam sistem dual-fuel.
====================================================================================================================================
Growing concerns about dependence on fossil fuels and their environmental impact have spurred research into renewable fuel alternatives. This study investigates the application of a dual-fuel system using biodiesel and hydrogen in a diesel engine to determine the knocking characteristics resulting from the biodiesel-hydrogen dual-fuel diesel engine. This study focuses on variations in the injection timing (SOI) and injection duration (DOI) of hydrogen in the dual-fuel system, with the aim of exploring their effects on knocking characteristics and engine performance. The methodology used involves testing a diesel engine using a blend of CPO biodiesel and hydrogen, with varying SOI values (40, 60, 80, 100, and 120) and DOI (60, 80, 100, and 120) to observe their effects on combustion efficiency, fuel consumption, and emission levels. The testing procedure included hydrogen concentration settings (2.5 lpm – 15 lpm) and varying loads (1000 – 5000 W) and engine speeds (1000 – 2000 rpm) to collect data on key performance metrics and emissions. Recorded performance data included brake power (BP), brake thermal efficiency (BTE), heat release rate (HRR), and knocking bar. The results showed that increasing the H₂ flow rate from 2.5 to 10 lpm caused a significant increase in knocking, with extreme values reaching up to 7.3 bar at DOI 60° and SOI 120°, potentially damaging the engine. Conversely, minimal knocking was achieved at H₂ flow rates of 2.5 lpm, DOI 140°, and SOI 40°, with a pressure of only 1.05 bar. Knocking is also influenced by the injection configuration, where slow SOI (≥100°) and short DOI (60°) increase pressure oscillations, while long DOI (≥100°) helps dampen them. Optimal engine performance is achieved at H₂ flowrate of 2.5–5 lpm, SOI of 60°, and DOI of 60– 80°, which results in thermal efficiency up to 30% and HRR concentrated around TDC. Thus, these configurations are recommended to achieve a balance between performance and combustion stability in dual-fuel systems.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Elektrokoagulasi, Limbah kolam lele, Metode siklon, STM32, Sensor RGB, Motor DC., Catfish pond wastewater, Cyclone, Electrocoagulation, Organic wastewater, RGB sensor.
Subjects: T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL152.5 Motor vehicles Driving
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL152.8 Vehicles, Remotely piloted. Autonomous vehicles.
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL221.5 Hybrid Vehicles. Hybrid cars
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL229.D5 Diesel automobiles
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21101-(S2) Master Thesis
Depositing User: Ahmad Khoirur Roziqi
Date Deposited: 04 Aug 2025 08:08
Last Modified: 06 Aug 2025 03:37
URI: http://repository.its.ac.id/id/eprint/125697

Actions (login required)

View Item View Item