Pemodelan dan Eksperimen Fenomena Perpindahan Massa Sistem Co2-Alkali pada Bubble Column Reactor

Setyabudi, Latif (2025) Pemodelan dan Eksperimen Fenomena Perpindahan Massa Sistem Co2-Alkali pada Bubble Column Reactor. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6008241029-Master_Thesis.pdf] Text
6008241029-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Pencemaran gas CO2 semakin masif terjadi, terutama akibat flue gas yang diemisikan Pembangkit Listrik Tenaga Uap (PLTU) sebesar 5 juta ton CO2/GW listrik terproduksi. Hal ini mendorong berbagai upaya untuk mengurangi emisi CO2 salah satunya melalui chemisorption. Metode ini tidak hanya dapat mengurangi emisi CO2, tetapi juga dapat menghasilkan produk bernilai ekonomis berupa karbonat ataupun bikerbonat. Adapun penelitian ini mengevaluasi kinerja bubble column reactor dalam proses chemisorption CO₂–KOH dengan pendekatan eksperimental dan numerik. Model Yoon–Nelson terbukti paling akurat dalam menggambarkan overall mass transfer coefficient dengan validasi statistik yang baik. Hasil menunjukkan bahwa peningkatan laju alir gas berpengaruh signifikan terhadap laju perpindahan massa dan reaksi, dengan kondisi optimal pada 3,0 L/menit dan 0,15 mol/L KOH menghasilkan Kₒₗ sebesar 4,78845 min⁻¹ dan k' sebesar 1,77182 min⁻¹. Parameter hidrodinamika seperti gas holdup, interfacial area, dan interfacial mass transfer coefficient juga meningkat secara linear terhadap laju alir gas dengan nilai pada kondisi optimal secara berurutan 0,1305; 260,97 m²/m³; dan 5,53737×10⁻⁵ m/s. Variasi diameter gelembung menunjukkan tren serupa. Meskipun hasil menunjukkan intermediate regime (0,02 < Ha < 2), sebagian literatur menyatakan bahwa reaksi CO₂–OH⁻ tergolong fast–instantaneous. Oleh karena itu, modifikasi operasi seperti peningkatan suhu, tekanan, dan penggunaan mikrogelembung disarankan untuk meningkatkan efisiensi reaktor.
========================================================================================================================================
CO₂ pollution has become increasingly severe, primarily due to flue gas emissions from coal-fired power plants (PLTU), which emit up to 5 million tons of CO₂ per gigawatt of electricity produced. This has prompted various mitigation strategies, one of which is chemisorption. This method not only reduces CO₂ emissions but also enables the production of economically valuable compounds such as carbonates and bicarbonates. This study evaluates the performance of a bubble column reactor for CO₂–KOH chemisorption using both experimental and numerical approaches. The Yoon–Nelson model was found to be the most accurate in representing the overall mass transfer coefficient, with strong statistical validation. Results indicate that increasing gas flowrate significantly enhances both mass transfer and reaction rates. Optimal conditions were achieved at 3.0 L/min gas flowrate and 0.15 mol/L KOH, resulting in Kₒₗ of 4.78845 min⁻¹ and k′ of 1.77182 min⁻¹. Hydrodynamic parameters such as gas holdup, interfacial area, and interfacial mass transfer coefficient also increased linearly with gas flowrate with the value when the system reach optimal condition were 0,1305; 260,97 m²/m³; and 5,53737×10⁻⁵ m/s respectively. A similar trend was observed with variations in bubble diameter. Although the chemisorption process in this study was categorized as an intermediate regime (0.02 < Ha < 2), literature suggests that CO₂–OH⁻ reactions typically occur under fast to instantaneous regimes. Therefore, operational modifications such as increased temperature, pressure, and the application of microbubbles are recommended to improve reactor efficiency.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Bubble Column Reactor; CO2 Chemisorption; Computational Fluid Dynamic; Hatta Number; Mass Transfer Coefficient.
Subjects: T Technology > T Technology (General) > T57.62 Simulation
T Technology > TP Chemical technology > TP155.7 Chemical processes.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24101-(S2) Master Thesis
Depositing User: Latif Setyabudi
Date Deposited: 04 Aug 2025 12:23
Last Modified: 04 Aug 2025 12:23
URI: http://repository.its.ac.id/id/eprint/125752

Actions (login required)

View Item View Item