Mayagrafinda, Isnainatul (2025) Magnetohidrodinamika Fluida Nano Radiatif yang Mengalir melalui Silinder Berpori. Masters thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
6002211010_Master Thesis.pdf - Accepted Version Restricted to Repository staff only Download (14MB) | Request a copy |
Abstract
Penelitian ini membahas model matematika aliran magnetohidrodinamika (MHD) fluida nano radiatif yang mengalir melalui silinder berpori dengan mempertimbangkan efek medan magnet, konveksi campuran, porositas media, radiasi termal, serta karakteristik fluida nano. Model matematika dikembangkan berdasarkan persamaan kontinuitas, momentum, dan energi. Penyelesaian numerik dari sistem persamaan diferensial yang diperoleh dilakukan menggunakan metode Keller Box. Simulasi dilakukan pada partikel nano Fe_2 O_3 dengan fluida dasar air dengan memvariasikan parameter radiasi, medan magnet, porositas, fraksi volume nanopartikel, bilangan Prandtl, dan parameter konveksi campuran. Hasil analisis menunjukkan bahwa peningkatan parameter magnetik dan porositas menyebabkan peningkatan kecepatan dan penurunan temperatur fluida, sedangkan peningkatan volume fraksi dan parameter konveksi campuran menyebabkan kecepatan menurun dan temperatur meningkat. Selain itu, parameter radiasi cenderung meningkatkan temperatur fluida, sementara bilangan Prandtl yang lebih besar menurunkan baik kecepatan maupun temperatur. Temuan ini menunjukkan pengaruh signifikan masing-masing parameter terhadap dinamika aliran dan distribusi temperatur dalam sistem silinder berpori berbasis fluida nano radiatif. Hasil penelitian ini diharapkan dapat memberikan kontribusi dalam memahami perilaku aliran fluida nano MHD radiatif pada media berpori, yang relevan untuk pengembangan teknologi termal dan aplikasi rekayasa energi modern.
=================================================================================================================================
This study investigates a mathematical model of radiative magnetohydrodynamic (MHD) nanofluid flow through a porous cylinder, taking into account the effects of magnetic fields, mixed convection, medium porosity, thermal radiation, and nanofluid characteristics. The model is formulated based on the continuity, momentum, and energy equations. The resulting system of differential equations is solved numerically using the Keller Box method. For running numerical simulation, we apply two nano fluids, i.e. nano particle nano 〖Fe〗_2 O_3with water as basic fluid and are carried out by varying the radiation parameter, magnetic parameter, porosity, nanoparticle volume fraction, Prandtl number, and mixed convection parameter. The analysis shows that increasing the magnetic and porosity parameters leads to higher velocity and lower fluid temperature, while increasing the volume fraction and mixed convection parameter results in reduced velocity and elevated temperature. In addition, the radiation parameter tends to increase the fluid temperature, whereas a higher Prandtl number decreases both velocity and temperature. These findings highlight the significant influence of each parameter on the flow dynamics and temperature distribution in a radiative nanofluid system through a porous cylinder. The results of this study are expected to contribute to a better understanding of radiative MHD nanofluid flow behavior in porous media, which is relevant to the development of thermal technologies and modern energy engineering applications.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Magnetohidrodinamika, Fluida Nano Radiatif, Silinder Berpori |
Subjects: | Q Science Q Science > QA Mathematics Q Science > QA Mathematics > QA911 Fluid dynamics. Hydrodynamics |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | Isnainatul Mayagrafinda |
Date Deposited: | 01 Aug 2025 03:03 |
Last Modified: | 01 Aug 2025 03:03 |
URI: | http://repository.its.ac.id/id/eprint/125766 |
Actions (login required)
![]() |
View Item |