Pengaruh Kemampuan Komposit Hydrochar Sabut Kelapa@O-doped Grphitic Carbon Nitride (g-C3N4) untuk Mereduksi Enrofloxacin

Sari, Diva (2025) Pengaruh Kemampuan Komposit Hydrochar Sabut Kelapa@O-doped Grphitic Carbon Nitride (g-C3N4) untuk Mereduksi Enrofloxacin. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5014211030-Undergraduate_Thesis.pdf] Text
5014211030-Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (5MB) | Request a copy

Abstract

Pencemaran Enrofloxacin, antibiotik golongan fluroquinolone yang resisten dan persisten di lingkungan, menjadi ancaman karena dapat menyebabkan resistensi mikroorganisme patogen dan kerusakan ekosistem air. Antibiotik ini sering ditemukan dalam limbah pertanian, peternakan, dan air limbah domestik dengan konsentrasi yang beragam, namun sulit dihilangkan melalui instalasi pengolahan air limbah (IPAL). Salah satu metode yang efektif untuk menyisihkan antibiotik adalah adsorpsi, yang menawarkan efisiensi tinggi, biaya rendah, dan jangkauan pengolahan luas. Penelitian ini bertujuan untuk mengembangkan komposit hydrochar sabut kelapa@O-doped g-C3N4 sebagai material adsorben yang efektif dan ramah lingkungan dalam mengatasi residu Enrofloxacin. Pembuatan komposit dilakukan melalui penggabungan hydrochar dari sabut kelapa dan material g-C₃N₄ terdoping oksigen. Hydrochar diperoleh melalui metode hydrothermal carbonization pada suhu 200 °C selama 10 jam, sedangkan g-C₃N₄ terdoping oksigen disintesis melalui metode kalsinasi campuran urea, dicyandimide, dan asam oksalat. Proses penggabungan kedua material dilakukan dengan bantuan alat jar test, dengan mengeksplorasi parameter optimasi berupa kecepatan dan waktu pengadukan untuk mencapai efisiensi agitasi yang optimum selama sintesis komposit. Variasi kecepatan pengadukan (100 dan 150 rpm) serta waktu pengadukan (1, 2, 3, dan 4 jam) dievaluasi guna menentukan kondisi optimum dalam menghasilkan komposit dengan performa terbaik. Uji kemampuan adsorpsi dilakukan secara batch terhadap larutan Enrofloxacin dengan konsentrasi awal 10 mg/L, menggunakan variasi waktu kontak antara 5 hingga 130 menit. Hasil penelitian menunjukkan bahwa kondisi optimum sintesis komposit dicapai pada kecepatan pengadukan 150 rpm selama 4 jam dengan kebutuhan daya sebesar 848,16 watt·detik. Komposit yang terbentuk memiliki morfologi dan gugus fungsi yang mendukung proses adsorpsi. Komposit hydrochar sabut kelapa@O-doped g-C₃N₄ memiliki efisiensi maksimum sebesar 47,7%, sedangkan g-C₃N₄ terdoping oksigen hanya menunjukkan efisiensi sebesar 30,81%. Efisiensi tertinggi diperoleh pada hydrochar murni dengan nilai 58,3%. Penurunan efisiensi pada komposit disebabkan oleh aglomerasi g-C₃N₄ yang menghalangi sebagian situs aktif dan melemahkan interaksi antar gugus fungsi. Isotermal adsorpsi pada seluruh material mengikuti model Freundlich, Kinetika adsorpsi pada hydrochar sabut kelapa dan komposit mengikuti model pseudo-order dua yang menunjukkan mekanisme adsorpsi kimia, sedangkan g-C₃N₄ terdoping oksigen mengikuti model pseudo-order satu yang dikendalikan oleh laju perpindahan massa pada permukaan.
===================================================================================================================================
The contamination of Enrofloxacin, a fluoroquinolone-class antibiotic that is resistant and persistent in the environment, poses a significant threat due to its potential to induce pathogenic microbial resistance and damage aquatic ecosystems. This antibiotic is frequently detected in agricultural, livestock, and domestic wastewater at varying concentrations, yet it is difficult to remove using conventional wastewater treatment plants (WWTPs). Adsorption is considered an effective method for antibiotic removal due to its high efficiency, low cost, and broad treatment applicability. This study aims to develop a coconut husk hydrochar@O-doped g-C3N4 composite as an efficient and environmentally friendly adsorbent for the removal of Enrofloxacin residues. The composite was synthesized by combining coconut husk-derived hydrochar with oxygen-doped g-C₃N₄. The hydrochar was produced via hydrothermal carbonization at 200°C for 10 hours, while the oxygen-doped g-C₃N₄ was synthesized by calcination of a mixture of urea, dicyandiamide, and oxalic acid. The combination of both materials was performed using a jar test apparatus, with optimization of agitation speed and stirring time to achieve the best mixing efficiency during the composite synthesis. Variations in stirring speed (100 and 150 rpm) and stirring time (1, 2, 3, and 4 hours) were evaluated to determine the optimum conditions for producing the best-performing composite. The adsorption performance was evaluated through batch experiments using Enrofloxacin solution with an initial concentration of 10 mg/L and contact times ranging from 5 to 130 minutes. The results showed that the optimum synthesis condition was achieved at 150 rpm for 4 hours with an energy requirement of 848.16 watt-seconds. The synthesized composite exhibited favorable morphology and functional groups that supported the adsorption process. The coconut husk hydrochar@O-doped g-C₃N₄ composite achieved a maximum adsorption efficiency of 47.7%, while pure oxygen-doped g-C₃N₄ showed an efficiency of 30.81%. The highest adsorption efficiency was achieved by pure hydrochar at 58.3%. The reduced efficiency of the composite was attributed to the agglomeration of g-C₃N₄, which blocked some of the active sites and weakened the interaction between functional groups. The adsorption isotherm of all materials followed the Freundlich model. The adsorption kinetics of coconut husk hydrochar and the composite followed the pseudo-second-order model, indicating a chemisorption mechanism, whereas oxygen-doped g-C₃N₄ followed the pseudo-first-order model, suggesting that the adsorption process was controlled by surface mass transfer.

Item Type: Thesis (Other)
Uncontrolled Keywords: Kata kunci: Adsorpsi, g-C3N4, Hydrochar Sabut Kelapa, Komposit Keywords: Adsorption, g-C3N4, Hydrochar Coconut Fiber, Composite
Subjects: T Technology > TD Environmental technology. Sanitary engineering > TD420 Water pollution
Divisions: Faculty of Civil Engineering and Planning > Environment Engineering > 25201-(S1) Undergraduate Thesis
Depositing User: Diva Luckyta Sari
Date Deposited: 04 Aug 2025 12:10
Last Modified: 04 Aug 2025 12:10
URI: http://repository.its.ac.id/id/eprint/125769

Actions (login required)

View Item View Item