Hudzaifah, Ammar Tsaqif (2025) Komposisi Mortar 3d Printing Dengan Variasi Superplasticizer Polycarboxylate Menggunakan Fiber Poliamida. Diploma thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
2035211026-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (9MB) | Request a copy |
Abstract
Tingginya kebutuhan rumah layak huni di Indonesia mendorong metode konstruksi inovatif teknologi 3D Printing Concrete (3DPC) yang menawarkan efisiensi waktu, biaya, dan sumber daya. Namun, keberhasilan aplikasi 3DPC sangat ditentukan oleh performa material pada kondisi segar dan saat pencetakan, khususnya dalam mempertahankan workability, extrudability, dan buildability. Superplasticizer tipe polycarboxylate ether (PCE) dipilih karena memiliki dosis kritis yang rendah dan memberikan dispersi partikel semen secara efisien, sehingga menghasilkan peningkatan aliran yang signifikan tanpa meningkatkan rasio air semen. Penambahan fiber poliamida terbukti efektif dalam menahan retak akibat penyusutan, meningkatkan viskositas campuran, serta memperbaiki kekuatan antar lapisan. Penelitian ini bertujuan mengkaji pengaruh variasi dosis PCE dengan 5% CaCO3 dari berat binder dan fiber poliamida 0,07% dari total volume terhadap sifat rheology dan mekanis 3DPC. Penelitian dilakukan menggunakan 3 variasi dengan penambahan PCE sebesar 0,7% (M0,7), 1% (M1), dan 1,2% (M1,2) dari berat binder. Pengujian printability dilakukan dengan 3 parameter, yaitu open time, extrudability, dan buildability. Open time ditinjau dari hasil uji flowability, extrudability ditinjau dari hasil simulasi secara visual dan rheology dengan pendekatan menggunakan uji Rheometer. Sedangkan buildability ditinjau secara visual dari hasil simulasi dan hasil uji Shape Retention Factor (SRF). Selain itu, penelitian juga meninjau sifat mekanis 3DPC dengan melakukan uji kuat tekan universal, uji kuat tekan bebas (UCT), dan nilai modulus young. Variasi M1 menunjukkan hasil paling optimal dalam retensi flowability (22,7-17,1 cm) dan kekuatan tekan 28 hari sebesar 58,1 MPa, serta mempertahankan bentuk hingga 10 lapisan. Meskipun variasi M0,7 menghasilkan static yield stress dan UCT tertinggi di awal (>60 kPa), retensi alirannya menurun drastis yang ditinjau dari flowability setelah 60 menit yaitu 15,7 cm. Oleh karena itu, Variasi M0,7 hanya bisa menghasilkan hingga 6 lapisan karena tidak extrudable. Pengujian rheometer menunjukkan semua variasi berada dalam zona rheology yang dapat dicetak, dengan nilai viskositas (33-80 Pa.s) dan nilai yield stress (20-125 Pa). Nilai modulus young (MY) terkecil pada variasi M1,2 (0,23-0,58 kPa) menyebabkan campuran dengan kekakuan rendah karena mengalami penurunan performa akibat overdosing sehingga tidak buildable yang dapat mencetak hingga 3 lapisan pada simulasi. Sedangkan variasi M1 dengan nilai MY (0,38-1,04 kPa) mendukung kekakuan awal yang cukup untuk menahan beban lapisan, sehingga menjadi komposisi yang paling optimal.
==================================================================================================================================
The increasing demand for adequate housing in Indonesia has driven the adoption of innovative construction methods, such as 3D Printing Concrete (3DPC), which offers efficiency in time, cost, and resource utilization. However, the successful implementation of 3DPC is highly dependent on the performance of fresh and printable materials, particularly in maintaining workability, extrudability, and buildability. The polycarboxylate ether (PCE)-type superplasticizer was selected for its low critical dosage and its ability to efficiently disperse cement particles, significantly enhancing flow without increasing the water-to-cement ratio. The addition of polyamide fibers has proven effective in mitigating shrinkage-induced cracking, increasing the mixture's viscosity, and improving interlayer bond strength. This study aims to investigate the effect of varying PCE dosages in combination with 5% CaCO₃ (by binder weight) and 0,07% polyamide fibers (by total volume) on the rheological and mechanical properties of 3DPC. The research involves three variations with PCE added at 0,7% (M0,7), 1% (M1), and 1,2% (M1,2) by binder weight. Printability was assessed using three parameters: open time, extrudability, and buildability. Open time was evaluated through flowability tests; extrudability was examined visually through simulation and rheologically using a rheometer; and buildability was assessed visually from simulation results and by measuring the Shape Retention Factor (SRF). Additionally, the mechanical properties of 3DPC were evaluated through compressive strength tests (28-day), unconfined compressive strength (UCT), and Young’s modulus measurements. The M1 variation demonstrated optimal performance, with flowability retention ranging from 22,7 to 1,1 cm and a 28-day compressive strength of 58,1 MPa, while maintaining its shape up to 10 printed layers. Although M0,7 exhibited the highest initial static yield stress and UCT values (>60 kPa), it suffered from a significant decline in flowability, dropping to 15,7 cm after 60 minutes. This variation could only print up to 6 layers due to poor extrudability. Rheometer tests indicated that all mixtures fell within the printable rheology zone, with viscosity values ranging from 33 to 80 Pa.s and yield stress values between 20 and 125 Pa. The lowest Young’s modulus (0,23–0,58 kPa) was observed in the M1,2 mixture, indicating reduced stiffness due to overdosing, resulting in poor buildability with a maximum of only three printed layers. Conversely, the M1 mixture, with a Young’s modulus ranging from 0,38 to 1,04 kPa, provided sufficient early-age stiffness to support successive layers, making it the most optimal composition.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | kuat tekan, 3D printing, polycarboxylate, rheology, compressive strength |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA418.16 Materials--Testing. T Technology > TA Engineering (General). Civil engineering (General) > TA433 Strength of materials. T Technology > TA Engineering (General). Civil engineering (General) > TA439 Lightweight concrete. High strength concrete. T Technology > TA Engineering (General). Civil engineering (General) > TA441 Aggregates T Technology > TA Engineering (General). Civil engineering (General) > TA681 Concrete construction T Technology > TH Building construction > TH1461 Concrete construction. |
Divisions: | Faculty of Vocational > Civil Infrastructure Engineering (D4) |
Depositing User: | Ammar Tsaqif Hudzaifah |
Date Deposited: | 04 Aug 2025 05:08 |
Last Modified: | 04 Aug 2025 05:08 |
URI: | http://repository.its.ac.id/id/eprint/125865 |
Actions (login required)
![]() |
View Item |