Karakterisasi Struktur Katoda Na2MnPO4F/C-rGO terhadap Pengaruh Variasi Temperatur Kalsinasi dengan Metode Pencampuran Padat

Amil, Adinda Nur Izzati (2025) Karakterisasi Struktur Katoda Na2MnPO4F/C-rGO terhadap Pengaruh Variasi Temperatur Kalsinasi dengan Metode Pencampuran Padat. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 500121197-Undergraduate_Thesis.pdf] Text
500121197-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Material katoda merupakan salah satu komponen kunci dalam sistem baterai natrium-ion karena berperan penting dalam menentukan kapasitas, kestabilan siklus, serta konduktivitas ionik dan elektronik. Salah satu kandidat yang menjanjikan untuk aplikasi ini adalah Na₂MnPO₄F, senyawa berbasis polianionik yang memiliki struktur kristal stabil dan tegangan operasi tinggi. Untuk meningkatkan performanya, pendekatan pelapisan karbon ganda dengan reduced Graphene Oxide (rGO) diperkenalkan. Dalam penelitian ini, dilakukan sintesis Na₂MnPO₄F/C-rGO menggunakan metode pencampuran padat (solid-state reaction), yang mencakup tahapan wet ball milling, reaksi hidrotermal, dan kalsinasi pada tiga variasi temperatur: 500°C, 600°C, dan 700°C. Analisis karakterisasi dilakukan melalui DTA-TGA, XRD, SEM-EDX, dan FTIR untuk mengetahui pengaruh suhu terhadap pembentukan fasa, kristalinitas, morfologi partikel, dan gugus fungsi. Hasil penelitian menunjukkan bahwa temperatur 600°C merupakan kondisi optimum yang menghasilkan kristalinitas tinggi, distribusi fasa Na₂MnPO₄F tertinggi (28,2%), serta komposisi unsur yang paling mendekati rasio teoritis. Selain itu, hasil SEM memperlihatkan pertumbuhan kristal yang lebih seragam pada suhu ini dengan standar deviasi paling kecil. Pada semua temperaur kalsinasi, mengonfirmasi bahwa karbon yang ditambahkan dalam bentuk serbuk rGO dan glukosa hanya berikatan sebagai jaringan C–C tanpa membentuk ikatan langsung dengan unsur utama (Na, Mn, P, O, atau F). Karbon tersebut berfungsi sebagai lapisan konduktif eksternal.
========================================================================================================================================
Cathode material is one of the key components in sodium-ion battery systems because it plays an important role in determining capacity, cycle stability, and ionic and electronic conductivity. One promising candidate for this application is Na₂MnPO₄F, a polyanionic compound with a stable crystal structure and high operating voltage. To enhance its performance, a double carbon coating approach using reduced graphene oxide (rGO) was introduced. In this study, Na₂MnPO₄F/C-rGO was synthesized using the solid-state reaction method, which includes wet ball milling, hydrothermal reaction, and calcination at three temperature variations: 500°C, 600°C, and 700°C. Characterization analysis was performed using DTA-TGA, XRD, SEM-EDX, and FTIR to investigate the effect of temperature on phase formation, crystallinity, particle morphology, and functional groups. The results showed that 600°C was the optimal temperature, producing high crystallinity, the highest distribution of the Na₂MnPO₄F phase (28.2%), and elemental composition closest to the theoretical ratio. Additionally, SEM results showed more uniform crystal growth at this temperature with the smallest standard deviation. At all calcination temperatures, it was confirmed that the carbon added in the form of rGO powder and glucose only forms C–C bonds without directly bonding with the main elements (Na, Mn, P, O, or F). This carbon functions as an external conductive layer.

Item Type: Thesis (Other)
Uncontrolled Keywords: Solid-State Reaction, Na₂MnPO₄F, Sodium-Ion Battery Cathode, Calcination, reduced Graphene Oxide (rGO), Metode Pencampuran Padat, Na₂MnPO₄F, Katoda Baterai Natrium-Ion, Kalsinasi, reduced Graphene Oxide (rGO).
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
Q Science > QC Physics > QC173.4.C63 Composite materials
Q Science > QC Physics > QC 611.97.T46 Temperature effects. Including transition temperature
Q Science > QD Chemistry > QD341.H9 Graphene
Q Science > QD Chemistry > QD481 Chemical structure.
Q Science > QD Chemistry > QD79.T38 Thermal analysis
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45201-(S1) Undergraduate Thesis
Depositing User: Adinda Nur Izzati Amil
Date Deposited: 04 Aug 2025 10:15
Last Modified: 04 Aug 2025 10:15
URI: http://repository.its.ac.id/id/eprint/125919

Actions (login required)

View Item View Item