Pengembangan Elektrokatalis Bifungsional Berbasis Nikel Ferit Untuk Aplikasi Baterai Zn-Udara

Khoirina, Naila (2025) Pengembangan Elektrokatalis Bifungsional Berbasis Nikel Ferit Untuk Aplikasi Baterai Zn-Udara. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6008231010-Master_Thesis.pdf] Text
6008231010-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Pengembangan material elektrokatalis bifungsional yang efisien untuk reaksi evolusi oksigen (Oxygen Evolution Reaction, OER) dan reduksi oksigen (Oxygen Reduction Reaction, ORR) merupakan tantangan utama dalam peningkatan performa baterai Zn–udara isi ulang. Dalam penelitian ini, telah berhasil disintesis material berbasis struktur core–shell NiFe melalui pendekatan ramah lingkungan menggunakan metode elektrosintesis dengan bantuan Prussian Blue Analogue (PBA), serta modifikasi lebih lanjut menggunakan karbon aerogel terdoping nitrogen (N-doped carbon aerogel, NCA). NiFe–PBA disintesis menggunakan elektroda besi sebagai anoda dan larutan NiSO₄ serta K₃[Fe(CN)₆] sebagai prekursor utama. Variasi pH (7, 9, 11, dan 13) serta jumlah NCA (C1–C4) dilakukan untuk memperoleh struktur optimum. Hasil karakterisasi morfologi melalui SEM, TEM, dan elemental mapping menunjukkan pembentukan partikel nano dengan ukuran rata-rata ~13 nm dan distribusi unsur homogen, serta keberhasilan pelapisan karbon tipis (~8,94 ± 1,64 nm) yang meningkatkan konduktivitas. Karakterisasi elektrokimia menunjukkan bahwa komposit NiFe–PBA9@C3 memberikan kinerja terbaik, dengan nilai potensial setengah (E₁/₂) sebesar 0,77 V (vs RHE), arus kinetika tinggi (ik = 0,41 mA·cm⁻²), serta jumlah transfer elektron mendekati 4 (n = 3,61), yang menandakan mekanisme ORR 4-elektron yang dominan. Nilai resistansi transfer muatan (Rct) rendah sebesar 21,18 Ω dan nilai Warburg tertinggi (W = 26,25 mMho) menunjukkan bahwa transport muatan dan difusi ion berlangsung efisien. Uji charge–discharge galvanostatik pada desain baterai pouch 4 × 6 cm dengan elektrolit 6 M KOH + 0,2 M ZnCl₂ dan arus 10 mA menunjukkan bahwa NiFe–PBA9@C3 mampu bertahan stabil selama lebih dari 100 jam dengan overpotensial rendah. Dengan demikian, pendekatan sintesis berbasis PBA dan integrasi karbon konduktif terbukti efektif dalam meningkatkan efisiensi, stabilitas, dan durabilitas elektrokatalis bifungsional untuk sistem penyimpanan energi Zn–udara yang berkelanjutan.
===============================================================================================================================================================
The development of efficient bifunctional electrocatalyst materials for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) remains a key challenge in improving the performance of rechargeable Zn–air batteries. In this study, a core–shell structured NiFe-based material was successfully synthesized via an eco-friendly electrosynthesis method assisted by Prussian Blue Analogue (PBA), followed by further modification using nitrogen-doped carbon aerogel (NCA). The NiFe–PBA was synthesized using an iron electrode as a sacrificial anode and NiSO₄ and K₃[Fe(CN)₆] as main precursors. Variations in pH (7, 9, 11, and 13) and NCA content (C1–C4) were conducted to optimize the structure. Morphological characterization via SEM, TEM, and elemental mapping confirmed the formation of uniform nanoparticles with an average size of ~13 nm, a homogeneous elemental distribution, and a thin carbon coating (~8.94 ± 1.64 nm) that enhanced electrical conductivity. Electrochemical characterization revealed that the NiFe–PBA9@C3 composite exhibited the best performance, with a half-wave potential (E₁/₂) of 0.77 V (vs RHE), a high kinetic current (ik = 0.41 mA·cm⁻²), and an electron transfer number close to four (n = 3.61), indicating a dominant 4-electron ORR pathway. A low charge transfer resistance (Rct) of 21.18 Ω and the highest Warburg (W = 26,25 mMho) coefficient also indicated efficient charge transport and ion diffusion. Galvanostatic charge–discharge tests using a 4 × 6 cm pouch cell design with 6 M KOH + 0.2 M ZnCl₂ electrolyte at 10 mA demonstrated that NiFe–PBA9@C3 maintained stable operation for over 100 hours with a low overpotential. These findings confirm that the PBA-based synthesis approach combined with conductive carbon integration is effective in enhancing the efficiency, stability, and durability of bifunctional electrocatalysts for sustainable Zn–air energy storage systems.

Item Type: Thesis (Masters)
Uncontrolled Keywords: elektrokatalis bifungsional, elektrokimia, karbon aerogel terdoping nitrogen, penyimpan energi bifunctional electrocatalyst, electrochemistry, N-doped carbon aerogel, energy storage.
Subjects: Q Science
Q Science > QD Chemistry
Q Science > QD Chemistry > QD281 Pyrolysis
Q Science > QD Chemistry > QD471 Chemical compounds - Structure and formulas
Q Science > QD Chemistry > QD553 Electrochemistry. Electrolysis
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Chemical Engineering > 24101-(S2) Master Thesis
Depositing User: Naila Khoirina
Date Deposited: 05 Aug 2025 07:01
Last Modified: 05 Aug 2025 07:01
URI: http://repository.its.ac.id/id/eprint/126097

Actions (login required)

View Item View Item