Butsaina, Nafisa Aqila (2025) Aplikasi Neutrosophic Logic dalam Metode Risk-Based Inspection (RBI) pada Pipa Minyak. Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5002211112-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
Evaluasi dan prioritas risiko yang efektif sangat penting untuk menjaga integritas sistem perpipaan di industri minyak dan gas, di mana kegagalan dapat mengakibatkan konsekuensi yang parah. Metode Risk-Based Inspection banyak digunakan untuk menilai risiko dengan API 581 sebagai pedoman standar. RBI kualitatif bergantung pada penilaian ahli untuk memperkirakan nilai Probability of Failure (PoF) dan Consequence of Failure (CoF) yang menyebabkan adanya subjektivitas dan ketidakpastian dalam pengkategorian tingkat risiko. Dalam mengatasi hal ini, banyak penelitian telah mengadopsi logika fuzzy, termasuk himpunan fuzzy klasik dan intuitionistics fuzzy sets, untuk mengurangi ketidakpastian dalam penilaian ahli. Penelitian ini mengusulkan pendekatan berbasis linguistik yang mengintegrasikan himpunan fuzzy neutrosophic dengan metode penjadwalan inspeksi berbasis risiko dalam kerangka API. Penilaian ahli dikumpulkan dalam bentuk linguistik dan diubah menjadi triangular neutrosophic number. Nilai-nilai ini kemudian diubah menjadi nilai crisp menggunakan konsep de-neutrosophication dan digunakan untuk menghitung tingkat risiko, serta mengurutkan prioritas dan disajikan dalam matriks risiko yang terklasifikasi. Pendekatan yang diusulkan dibandingkan dengan metode RBI kualitatif untuk menilai konsistensi ranking, perbedaan, dan potensi dalam hasil penilaian risiko. Hasil menunjukkan kesesuaian 97% dengan RBI kualitatif berdasarkan skala konversi yang digunakan. Selain itu, pendekatan ini menghasilkan peringkat numerik yang mempermudah prioritas saat objek berada pada kategori linguistik yang sama.
===================================================================================================================================
Effective risk evaluation and prioritization are crucial for maintaining the integrity of pipeline systems in the oil and gas industry, where failures can result in severe consequences. The risk-based inspection framework is widely used for assessing risks with API 581 as the standard. Qualitative RBI relies on expert judgment to estimate the probability of failure (PoF) and consequence of failure (CoF), but its categorical risk classification may introduce subjectivity and uncertainty. Many researchers have explored fuzzy logic, including classical and intuitionistic fuzzy sets, to reduce uncertainty in expert judgments. In this work, we propose a linguistic-based approach that integrates neutrosophic sets, which is a generalization of fuzzy sets, with the risk-based inspection method within the API framework. Expert judgments are gathered in linguistic terms and converted into triangular neutrosophic numbers. These values are transformed into crisp numbers using the de-neutrosophication concept which are then used to calculate risk levels, rank priorities, and present the results in a classified risk matrix. The proposed approach is compared with the qualitative RBI method to examine the ranking consistency, differences, and potential advantages in handling uncertainty. The results show a 97% match with qualitative RBI based on the applied conversion scale. In addition, this approach produces numerical rankings that facilitate prioritization when objects fall into the same linguistic category.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Neutrosophic Sets, API, RBI, Risiko |
Subjects: | Q Science > QA Mathematics > QA39.3 Fuzzy mathematics Q Science > QA Mathematics > QA248_Fuzzy Sets |
Divisions: | Faculty of Mathematics and Science > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Nafisa Aqila Butsaina |
Date Deposited: | 01 Aug 2025 08:37 |
Last Modified: | 01 Aug 2025 08:37 |
URI: | http://repository.its.ac.id/id/eprint/126136 |
Actions (login required)
![]() |
View Item |