Model Biaya Operasional Kendaraan Listrik Berbasis Baterai

Nadhif, Muhammad Fikri (2025) Model Biaya Operasional Kendaraan Listrik Berbasis Baterai. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6012231060-Master_Thesis.pdf] Text
6012231060-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (3MB) | Request a copy

Abstract

Krisis energi, polusi udara, dan peningkatan emisi gas rumah kaca mendorong pengembangan kendaraan listrik berbasis baterai (KLBB) sebagai solusi transportasi ramah lingkungan. Di Indonesia, meski pemerintah telah menetapkan regulasi dan insentif untuk mempercepat adopsi KLBB, tingkat penggunaannya masih rendah akibat harga jual yang tinggi dan kurangnya kesadaran akan efisiensi biaya operasional. Biaya operasional menjadi faktor penting dalam keputusan pembelian, terutama karena KLBB menawarkan efisiensi energi dan biaya perawatan yang lebih rendah. Penelitian ini bertujuan mengidentifikasi variabel yang memengaruhi biaya operasional KLBB dan merumuskan model prediktif yang dapat digunakan untuk mendukung percepatan adopsi serta analisis kelayakan pembangunan infrastruktur transportasi.
Pendekatan kuantitatif dengan menggunakan model regresi linier dan polinomial diterapkan untuk mengeksplorasi hubungan antara berbagai komponen biaya operasional dan kecepatan KLBB. Data dikumpulkan dari survei pengguna KBB di seluruh Indonesia, yang mencakup pola penggunaan, konsumsi energi, dan pemeliharaan kendaraan. Model ini mengidentifikasi faktor-faktor biaya utama, termasuk iaya pengisian ulang daya, biaya jasa pemeliharaan, biaya gear reducer oil, biaya ban, biaya penggunaan baterai, biaya suku cadang, dan biaya depresiasi. Digunakan variabel independen adalah kecepatan dan jarak tempuh harian untuk memberikan gambaran bagaimana pola berkendara mempengaruhi biaya operasional kendaraan listrik.
Hasil penelitian menunjukkan bahwa secara statistik, model regresi antara total biaya serta komponen biaya operasional kendaraan listrik dengan kecepatan dinyatakan valid, meskipun nilai koefisien determinasinya relatif rendah. Hal serupa juga ditemukan pada model regresi dengan variabel jarak tempuh harian, yang secara statistik valid, namun tidak signifikan dalam menjelaskan beberapa komponen biaya seperti biaya pengisian ulang daya, biaya gear reducer oil, biaya ban, dan biaya suku cadang. Analisis lanjutan melalui segmentasi jenis kendaraan menunjukkan bahwa pada segmen compact SUV sebagai representasi kendaraan listrik berbasis baterai, regresi antara kecepatan dan total biaya operasional menghasilkan model yang signifikan dengan koefisien determinasi yang kuat. Secara umum, total biaya operasional KLBB lebih tinggi dibandingkan kendaraan konvensional, terutama disebabkan oleh tingginya komponen biaya tetap berupa depresiasi. Namun demikian, biaya tidak tetap KLBB tercatat jauh lebih rendah dibandingkan kendaraan konvensional.
========================================================================================================================
The ongoing energy crisis, air pollution, and increasing greenhouse gas emissions have driven the development of battery electric vehicles (BEVs) as an environmentally friendly transportation solution. In Indonesia, despite government-issued regulations and incentives to accelerate BEV adoption, their usage remains low due to high purchase prices and a lack of awareness regarding operational cost efficiency. Operational costs play a crucial role in consumer purchase decisions, particularly as BEVs offer higher energy efficiency and lower maintenance costs. This study aims to identify the variables influencing BEV operational costs and to formulate a predictive model that can support the acceleration of adoption and serve as a reference for transport infrastructure feasibility studies.
A quantitative approach using linear and polynomial regression models was employed to explore the relationship between various operational cost components and BEV driving speed. Data were collected through a survey of BEV users across Indonesia, covering usage patterns, energy consumption, and vehicle maintenance. The model identified key cost factors including recharging costs, maintenance service fees, gear reducer oil, tire costs, battery usage expenses, spare parts, and depreciation. The independent variables used were vehicle speed and daily travel distance to illustrate how driving behavior impacts operational costs.
The results indicate that the regression models of total and component-wise operational costs against speed are statistically valid, although the coefficient of determination values are relatively low. Similarly, the regression model using daily travel distance is statistically valid, yet the variable is not significant in explaining certain cost components, such as recharging, gear reducer oil, tire, and spare parts expenses. Further analysis through vehicle segmentation highlights that the compact SUV segment—used as a representative of BEVs—yielded a statistically significant regression model between speed and total operational costs, with a strong coefficient of determination. Overall, BEVs exhibit higher total operational costs than conventional vehicles, primarily due to elevated fixed costs in the form of depreciation. Nevertheless, BEVs demonstrate substantially lower variable costs, including energy and maintenance, compared to conventional vehicles.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Battery Electric Vehicle, Regression Model, Vehicle Operating Cost, Biaya Operasional Kendaraan, Kendaraan Listrik Berbasis Baterai, Model Regresi
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Civil Engineering > 22101-(S2) Master Thesis
Depositing User: Muhammad Fikri Nadhif
Date Deposited: 04 Aug 2025 08:29
Last Modified: 04 Aug 2025 08:29
URI: http://repository.its.ac.id/id/eprint/126162

Actions (login required)

View Item View Item