Analisis Vibrasi Pada Elbow Pipe Dengan Variasi Posisi Pipe Support Dan Dimensi Pipa

Fakhrullah, Fawwaz Fairuz (2025) Analisis Vibrasi Pada Elbow Pipe Dengan Variasi Posisi Pipe Support Dan Dimensi Pipa. Other thesis, Institut Teknologi Sepuluh November.

[thumbnail of 5007211214_Undergraduate_Thesis.pdf] Text
5007211214_Undergraduate_Thesis.pdf
Restricted to Repository staff only

Download (5MB) | Request a copy

Abstract

Penelitian ini bertujuan untuk menganalisis karakteristik getaran pada sistem perpipaan berelbow akibat pengaruh tekanan fluida internal dengan pendekatan numerik terintegrasi berupa Computational Fluid Dynamics (CFD), Fluid-Structure Interaction (FSI), dan Finite Element Analysis (FEA). Studi ini difokuskan pada pengaruh variasi ketebalan dinding pipa (0,01 m dan 0,09 m) serta posisi penyangga pipa (2,5 m dan 5 m dari elbow) terhadap respons tekanan, tegangan, deformasi, dan frekuensi alami getaran pipa. Geometri sistem pipa dirancang dengan panjang 10 m sebelum elbow dan 5 m sesudahnya untuk mencerminkan konfigurasi industri yang umum digunakan.
Simulasi CFD dilakukan menggunakan ANSYS Fluent untuk memperoleh distribusi tekanan dan kecepatan fluida pada dua kondisi debit (0,005 m³/s dan 0,01 m³/s) dengan tekanan masuk 2 bar dan 2,5 bar. Hasil dari simulasi ini menunjukkan peningkatan tekanan dan kecepatan fluida secara signifikan pada daerah elbow, khususnya pada sisi dalam belokan yang mengalami percepatan aliran. Data tekanan dari hasil CFD digunakan sebagai input beban fluida dalam simulasi FSI.
Simulasi FSI dilakukan untuk mengevaluasi respons struktural pipa terhadap tekanan fluida menggunakan ANSYS Mechanical. Hasil simulasi menunjukkan bahwa deformasi maksimum terjadi pada bagian outlet dan tegangan maksimum terjadi pada dinding bagian dalam pipa sisi inlet. Konfigurasi berdinding tipis (0,01 m) dan posisi support 5 m dari elbow menghasilkan deformasi maksimum sebesar 0,034951 m dan tegangan maksimum 9672,4 Pa, jauh lebih besar dibandingkan konfigurasi berdinding tebal (0,09 m) dengan support dekat.
Selanjutnya, analisis modal dilakukan untuk mengetahui karakteristik frekuensi alami dan mode getar pipa. Simulasi dilakukan dengan dan tanpa mempertimbangkan massa fluida di dalam pipa. Hasil menunjukkan bahwa kehadiran fluida menurunkan frekuensi alami akibat efek massa tambahan (added mass), serta memengaruhi bentuk mode getar. Pipa berdinding tipis dan support jauh cenderung memiliki frekuensi alami lebih rendah, meningkatkan potensi resonansi.
Secara keseluruhan, penelitian ini menunjukkan bahwa variasi ketebalan dan posisi support pipa berperan penting dalam menentukan kestabilan sistem perpipaan terhadap beban dinamis fluida. Pendekatan terintegrasi CFD–FSI–FEA memberikan pemahaman menyeluruh terhadap interaksi fluida dan struktur serta menjadi dasar perancangan sistem penyangga dan pemilihan dimensi pipa yang optimal untuk mencegah resonansi dan kerusakan struktural.
====================================================================================================================================
This research aims to analyze the vibration characteristics of an elbow piping system due to the influence of internal fluid pressure using an integrated numerical approach consisting of Computational Fluid Dynamics (CFD), Fluid-Structure Interaction (FSI), and Finite Element Analysis (FEA). The study focuses on the effects of variations in pipe wall thickness (0.01 m and 0.09 m) and pipe support positions (2.5 m and 5 m from the elbow) on pressure response, stress, deformation, and natural vibration frequency. The pipe geometry is designed with a length of 10 m before the elbow and 5 m after it to reflect a common industrial configuration.
CFD simulations were performed using ANSYS Fluent to obtain the fluid pressure and velocity distributions for two flowrate conditions (0.005 m³/s and 0.01 m³/s) at inlet pressures of 2 bar and 2.5 bar. The simulation results show a significant increase in fluid pressure and velocity in the elbow region, particularly on the inner curvature, which experiences flow acceleration. The pressure data from the CFD results were used as fluid load inputs for the FSI simulation.
The FSI simulation was conducted using ANSYS Mechanical to evaluate the structural response of the pipe to fluid pressure. The results showed that the maximum deformation occurred at the pipe outlet, while the maximum stress appeared on the inner wall of the pipe at the inlet. The thin-wall configuration (0.01 m) with a 5 m support distance from the elbow resulted in a maximum deformation of 0.034951 m and maximum stress of 9672.4 Pa—significantly higher than the thick-wall configuration (0.09 m) with a closer support position.
Subsequently, a modal analysis was performed to determine the natural frequencies and vibration mode shapes of the pipe. Simulations were conducted both with and without considering the fluid mass inside the pipe. The results revealed that the presence of fluid reduces the natural frequency due to the added mass effect and alters the vibration mode shape. Pipes with thinner walls and more distant support positions tended to have lower natural frequencies, increasing the risk of resonance.
Overall, this study shows that variations in pipe wall thickness and support positioning play a crucial role in determining the stability of piping systems under dynamic fluid loads. The integrated CFD–FSI–FEA approach provides a comprehensive understanding of fluid-structure interaction and serves as a foundation for designing optimal support systems and pipe dimensions to prevent resonance and structural failure.

Item Type: Thesis (Other)
Uncontrolled Keywords: Getaran Pipa, Pengaruh support dan dimensi, Analisa FEA dan CFD, Frekuensi alami,Piping Vibration, Effect of support and dimensions, FEA and CFD analysis, Natural Frequency
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA347 Finite Element Method
T Technology > TA Engineering (General). Civil engineering (General) > TA355 Vibration.
T Technology > TA Engineering (General). Civil engineering (General) > TA357 Computational fluid dynamics. Fluid Mechanics
T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ930 Pipelines (General). Underwater pipelines.
T Technology > TJ Mechanical engineering and machinery > TJ935 Pipe--Fluid dynamics. Tubes--Fluid dynamics
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Fawwaz Fairuz Fakhrullah
Date Deposited: 01 Aug 2025 09:49
Last Modified: 01 Aug 2025 09:49
URI: http://repository.its.ac.id/id/eprint/126188

Actions (login required)

View Item View Item