Septiani, Anggita Putri (2025) Pemodelan Indeks Ketimpangan Gender (IKG) Dalam Kesetaraan Gender di Indonesia Menggunakan Metode Geographically Weighted Regression (GWR). Other thesis, Institut Teknologi Sepuluh Nopember.
![]() |
Text
5003211081-Undergradute_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy |
Abstract
Kesetaraan gender merupakan salah satu tujuan dari Sustainable Development Goals (SDGs) dan menjadi sasaran rencana pembangunan yang terdapat dalam Rencana Pembangunan Jangka Menengah (RPJM) ke-4 (2005-2025) yaitu dalam meningkatkan sumber daya manusia termasuk peran perempuan dalam pembangunan. Penelitian ini bertujuan untuk mendapatkan gambaran umum IKG serta variabel-variabel yang diduga memengaruhinya, mengidentifikasi adanya efek spasial pada IKG di tiap provinsi di Indonesia, dan menganalisis variabel yang diduga memengaruhi IKG berdasarkan hasil Geographically Weighted Regression (GWR). Data yang digunakan berasal dari 34 provinsi di Indonesia pada tahun 2023. Analisis aspek data spasial digunakan dalam analisis ini dan terbukti bahwa terdapat heterogenitas spasial pada data sehingga akan dilakukan pendekatan Geographically Weighted Regression (GWR) untuk menangkap variasi koefisien antar wilayah yang akan menghasilkan model-model yang berbeda di tiap provinsi. Berdasarkan hasil pemodelan, didapatkan bahwa Tingkat Partisipasi Angkatan Kerja Perempuan (X_1), Proporsi Persalinan Non-Faskes (X_2), Proporsi Kelahiran Anak Pertama Usia Dini (X_3), dan Persentase Keterlibatan Perempuan di Parlemen (X_6) berpengaruh signifikan terhadap IKG di 28 provinsi. Sementara itu, variabel Tingkat Partisipasi Angkatan Kerja Perempuan (X_1) tidak berpengaruh signifikan di enam provinsi sisanya. Selain itu Tingkat Partisipasi Angkatan Kerja Perempuan (X_1) dan Persentase Keterlibatan Perempuan di Parlemen (X_6) memiliki pengaruh negatif terhadap IKG sedangkan Proporsi Persalinan Non-Faskes (X_2) dan Proporsi Kelahiran Anak Pertama Usia Dini (X_3) berpengaruh positif terhadap IKG. Model GWR terbukti memberikan performa yang lebih baik dibandingkan dengan regresi linear global dibuktikan dengan nilai AIC paling kecil sebesar -133,918 dan R^2 tertinggi sebesar 90,5%.
====================================================================================================================================
Gender equality is one of the goals of the Sustainable Development Goals (SDGs) and has also become a target of develompent planning in Indonesia’s Medium-Term Development Plan (RPJM) Phase IV (2020-2024), particularly in improving human resources, including the role of women in development. This study aims to provide an overview of the Gender Inequality Index (GII) and identify the variables that are presumed to influence it, detect spatial effects on GII across provinces in Indonesia, and analyze those variables using Geographically Weighted Regression (GWR) method. The data used in this study covers 34 provinces in Indonesia in the year 2023. Spatial data analysis was applied and revealed the presence of spatial heterogeneity, which jsutifies the use of the GWR approach to capture coefficient variations across regions resulting in different models for each province. The modeling results show that the Female Labor Force Participation Rate (X_1), the Proportion of Non-Health Facility Births (X_2), the Proportion of Early First Births (X_3), and the Percentage of Women’s Representation in Parliament (X_6) significantly influence GII in 28 provinces. Meanwhile, the Female Labor Force Participation Rate (X_1) was not significant in the remaining six provinces. Furthermore, Female Labor Force Participation Rate (X_1) and the Percentage of Women’s Representation in Parliament (X_6 ) have negative effect on GII while the Proportion of Non-Health Facility Births (X_2) and the Proportion of Early First Births (X_3) have positive effect. The GWR model outperforms the global linear regression model, as indicated by a lower AIC value of -133,918 and a higher R^2 of 90,5%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Gender, GWR, IKG, Gender, GII, GWR |
Subjects: | H Social Sciences > HA Statistics > HA30.6 Spatial analysis |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Anggita Putri Septiani |
Date Deposited: | 01 Aug 2025 09:48 |
Last Modified: | 01 Aug 2025 09:48 |
URI: | http://repository.its.ac.id/id/eprint/126236 |
Actions (login required)
![]() |
View Item |