Rancang Bangun Sistem Internet Of Things Pada GPS Drone Quadcopter Untuk Mendeteksi Kadar Gas Berbahaya Pada Tangki Kargo Kapal Tanker

Diranti, Prameswari (2025) Rancang Bangun Sistem Internet Of Things Pada GPS Drone Quadcopter Untuk Mendeteksi Kadar Gas Berbahaya Pada Tangki Kargo Kapal Tanker. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5019211141-Undergraduate_Thesis.pdf] Text
5019211141-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (18MB) | Request a copy

Abstract

Salah satu masalah penyebab kematian utama di kapal adalah kecelakaan kerja yang terjadi di ruang terbatas kapal yang muncul pada saat crew kapal melakukan inspeksi, pembersihan, pemeliharaan, dan perbaikan. U.S. Bureau of Labor Statistics menemukan bahwa pada 2011 – 2018 terdapat 1030 pekerja yang tewas akibat kecelakaan kerja di ruang tertutup. Pada umumnya kematian crew kapal disebabkan oleh kurangnya kadar oksigen dan menghirup zat berbahaya, yaitu senyawa hidrokarbon bercaun seperti H2S, CO, CO2, dan NOx. Salah satu jenis kapal yang membawa muatan yang mengandung zat berbahaya adalah kapal tanker. Setiap keputusan untuk masuk ke ruang terbatas kapal hanya boleh dilaksanakan setelah proses pemeriksaan dilakukan. Proses tersebut dinamakan gas test yang merupakan sebuah proses pengetesan material berbahaya yang mungkin dapat menimbulkan bahaya bagi pekerja yang berdekatan dengan sumber atau tempat zat berbahaya tersebut. Salah satu teknologi yang dapat menggantikan tugas manusia tersebut hingga mengurangi terjadinya risiko kecelakaan kerja tersebut adalah drone. Drone selaku salah satu jenis dari Unmanned Aerival Vehicle (UAV) sudah banyak digunakan pada bidang maritim. Pengembangan teknologi drone dilakukan pada penilitian kali ini yang berfokus pada pendeteksian konsentrasi gas berbahaya, yaitu Hidrogen Sulfida dan Karbon Monoksida yang dilakukan pada kondisi simulasi tangki kargo kapal tanker. Pendeteksian dilakukan dengan menggunakan GPS Drone Quadcopter yang membawa kotak sensor yang terintegrasi dengan sistem Internet of Things. Hasil pendeteksian H2S selama 10 menit diperoleh data dari rentang 0 – 22 ppm, lalu hasil pendeteksian CO selama 10 menit diperoleh data dari rentang rentang 2 - 257 ppm. Sejumlah 601 data dianalisis dengan mengklasifikasi seluruh data tersebut berdasarkan ambang batas aman yang telah ditetapkan oleh Occupational Safety and Health Administration (OSHA). Berdasarkan hasil pengolahan data, pada H2S ditemukan sejumlah 598 data berada di ambang batas aman dan 3 data melebihi ambang batas aman, kemudian pada CO ditemukan sejumlah 561 data berada di ambang batas aman dan 40 data melebihi ambang batas aman.
========================================================================================================================
One of the leading causes of fatalities on ships is workplace accidents that occur in confined spaces, typically during inspection, cleaning, maintenance, or repair activities carried out by the crew. According to the U.S. Bureau of Labor Statistics, from 2011 to 2018, a total of 1,030 workers died due to confined space-related workplace accidents. These fatalities are commonly caused by low oxygen levels and inhalation of toxic substances, particularly hazardous hydrocarbon compounds such as H₂S, CO, CO₂, and NOₓ. One type of ship that frequently carries hazardous substances is the tanker ship. Any decision to enter a confined space on board must only be made after a thorough inspection process. This inspection, known as a gas test, is conducted to detect the presence of harmful substances that may pose a danger to workers near the source or location of the hazardous material. One technology capable of replacing human involvement in such inspections—thus reducing the risk of accidents—is the drone. As a type of Unmanned Aerial Vehicle (UAV), drones have been widely used in the maritime sector. This study focuses on the development of drone technology for detecting hazardous gas concentrations, specifically hydrogen sulfide (H₂S) and carbon monoxide (CO), in a simulated environment of a tanker ship’s cargo tank. The detection process utilizes a GPS-enabled quadcopter drone equipped with a sensor box integrated into an Internet of Things (IoT) system. The detection results over a 10-minute period showed H₂S concentrations ranging from 0 to 22 ppm, and CO concentrations ranging from 2 to 257 ppm. A total of 601 data points were analyzed and classified according to the safety threshold limits set by the Occupational Safety and Health Administration (OSHA). The results showed that for H₂S, 598 data points were within the safe threshold, while 3 exceeded it. For CO, 561 data points were within the safe threshold, and 40 exceeded the limit.

Item Type: Thesis (Other)
Uncontrolled Keywords: Drone Quadcopter, Gas Sensor, Internet of Things, Tanker, Threshold Based Analysis
Subjects: T Technology > T Technology (General) > T55.3.H3 Hazardous substances--Safety measures.
T Technology > TR Photography > TR810 Aerial photography
T Technology > TS Manufactures > TS176 Manufacturing engineering. Process engineering (Including manufacturing planning, production planning)
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM365 Remote submersibles. Autonomous vehicles.
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36202-(S1) Undergraduate Thesis
Depositing User: Prameswari Diranti
Date Deposited: 04 Aug 2025 01:41
Last Modified: 21 Aug 2025 02:04
URI: http://repository.its.ac.id/id/eprint/126498

Actions (login required)

View Item View Item